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Abstract— The rise of hyper-realistic synthetic media generated
by Generative Adversarial Networks (GANs) and diffusion models
poses significant challenges to deepfake detection systems,
particularly in cross-dataset and cross-GAN generalization. In this
work, we propose ASL-MDFD: a novel framework that unifies
Adversarial training, Self-Supervised Learning (SSL), and
Multimodal Fusion to detect deepfakes across diverse sources. Qur
approach leverages rotation prediction, patch shuffling recovery,
and contrastive audio-visual alignment as pretext tasks to learn
intrinsic representations without heavy reliance on labels.
Simultaneously, adversarially perturbed examples generated
using PGD simulate artifacts from unseen GANs, improving
model robustness. The multimodal architecture integrates visual,
audio, and temporal streams using cross-modal attention to detect
inconsistencies in facial textures, voice artifacts, and motion
dynamics. Evaluated across FaceForensics++, DFDC, Celeb-DF,
StyleGAN3, and StarGANv2 datasets, ASL-MDFD achieves state-
of-the-art performance, including 92.3% AUC on Celeb-DF and
88.7% accuracy on StyleGANS3 fakes, significantly outperforming
existing baselines. Qur results demonstrate the effectiveness of
combining SSL, adversarial resilience, and multimodal cues in
building robust, generalizable deepfake detectors.

Index Terms— Deepfake Detection, Generative Adversarial
Networks, Self-Supervised Learning, Adversarial Training,
Multimodal Fusion, Cross-Dataset Generalization

I. INTRODUCTION

The rapid advancement of Generative Adversarial Networks
(GANs) and diffusion models has enabled the creation of
highly photorealistic synthetic media—commonly referred to
as deepfakes. While these technologies provide
groundbreaking applications in entertainment, design, and
healthcare, they also present significant threats related to
misinformation, identity theft, and digital fraud. Deepfakes
have reached a level of visual and auditory realism that
challenges both human perception and conventional detection
systems.

Despite considerable progress in deepfake detection, existing
models often exhibit poor generalization—failing to detect
fakes generated by unseen GAN architectures or tested on
datasets that differ from their training distribution. For example,
models trained on FaceForensics++, which includes earlier
GANs like DeepFakes and FaceSwap, perform significantly
worse on Celeb-DF, which features more subtle manipulations
using StyleGAN3 or diffusion-based techniques. These newer
methods introduce sophisticated artifacts such as fine-grained
texture inconsistencies, subtle lighting mismatches, and
stochastic pixel anomalies, which are often missed by models
tailored to older forgery patterns.

To address these challenges, we introduce ASL-MDFD—an
Adversarial Self-supervised Learning framework for
Multimodal Deepfake Detection. Our approach is built on
three foundational pillars:

1. Self-Supervised Learning (SSL):
Through pretext tasks like rotation prediction,
patch shuffling recovery, and contrastive audio-
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visual alignment, our model learns rich and
generalizable feature representations without relying
heavily on labeled data. These tasks encourage
sensitivity to intrinsic structural and temporal
inconsistencies common in synthetic content.
2. Adversarial Training:
Leveraging Projected Gradient Descent (PGD), we
simulate adversarial perturbations that mimic artifact
patterns from advanced GANSs and diffusion models.
3.  Multimodal Fusion:
ASL-MDFD incorporates a tri-stream architecture
that jointly processes visual, audio, and temporal
cues. This allows the model to capture
inconsistencies across modalities—such as
mismatched lip-syncing, robotic voice patterns, and
unnatural motion dynamics—providing holistic
deepfake detection capability.

In empirical evaluations across a diverse suite of benchmarks—
including FaceForensics++, DFDC, Celeb-DF, and synthetic
data from StyleGAN3 and StarGANv2—our model
demonstrates superior performance. Notably, ASL-MDFD
achieves 92.3% AUC on Celeb-DF, outperforming traditional
supervised models by a substantial margin.

By combining SSL, adversarial robustness, and multimodal
reasoning, ASL-MDFD paves the way toward generalizable,
scalable, and ethically responsible solutions to the deepfake
detection problem.

II. RELATED WORK

2.1 Supervised Deepfake Detection

Traditional deepfake detection methods have primarily relied
on supervised learning, where models are trained on labeled
datasets of real and manipulated media. A prominent example
is XceptionNet [1], which employs depthwise separable
convolutions and achieves impressive results—up to 98%
AUC on FaceForensics++. However, its generalization
capabilities are limited. When applied to unseen datasets such
as Celeb-DF [2], XceptionNet's performance degrades
significantly (65% AUC), revealing its dependence on dataset-
specific artifacts.

Capsule Networks [8] offer an alternative by modeling part-
whole relationships, such as eye-nose-mouth geometry. These
spatial hierarchies are effective for high-quality manipulations,
but capsule-based approaches are vulnerable to perturbations
introduced by adversarial techniques, especially those
mimicking unseen GAN-generated noise.

[1] 2.2 Adversarial Training

Adversarial training has emerged as a promising defense
against adversarial examples in classification tasks. The work
by Madry et al. [6] introduced Projected Gradient Descent
(PGD) as a reliable attack model for training robust image
classifiers. However, its application in the context of deepfake
detection remains limited. PGD does not inherently account for
the unique artifacts of synthetic media, such as checkerboard
patterns in ProGAN or texture shifts in StyleGAN3 [3].

To address this, AT-Meso [9] applies adversarial training to
the lightweight MesoNet architecture, aiming to improve
robustness against synthetic image perturbations. While

effective in certain settings, AT-Meso is restricted to low-
resolution inputs (e.g., 256%256), and its performance declines
with high-resolution forgeries such as those produced by
StyleGAN3 (1024x1024).

2.3 Self-Supervised Learning (SSL) in Media Forensics

Recent advances in Self-Supervised Learning (SSL) have
highlighted its potential in generalizable representation
learning. Contrastive learning frameworks such as SimCLR
[10] use NT-Xent loss to maximize similarity between positive
pairs (e.g., augmented versions of the same image) and
dissimilarity between negatives. While effective in visual
classification, these methods often overlook structure-level
inconsistencies that are crucial for detecting GAN-based
manipulations.

Rotation prediction [11] is a simpler SSL task that requires the
model to predict image orientation (e.g., 0°, 90°, 180°, 270°). It
encourages the learning of spatial priors and is particularly
useful for capturing unnatural geometry, such as asymmetries
in StarGANv2 outputs [5]. However, these approaches remain
unimodal, missing complementary cues in audio or motion,
which are critical in video-based deepfakes.

2.4 Multimodal Approaches

To address the limitations of unimodal detection, recent works
have explored multimodal fusion. Models that combine visual
and audio modalities, such as CNN-LSTM architectures [12],
can detect lip-sync mismatches and synthetic speech
artifacts. Despite their potential, these models often fail when
tested on sophisticated datasets like DFDC [13], where modern
GANSs accurately align audio-visual streams.

Temporal stream analysis, especially through optical flow
and ConvLSTMs, has been applied to detect motion
irregularities such as unnatural blinking or fixed gaze [14].
However, many of these approaches treat visual, audio, and
temporal cues in isolation, without leveraging the synergy that
cross-modal attention and joint training can provide.

Research Gap

In summary, current deepfake detection methods often
specialize in a single domain—supervised learning, adversarial
training, or self-supervised pretext tasks—and seldom combine
modalities. This siloed approach leads to limited generalization,
especially in real-world scenarios involving unseen GANs or
diffusion models. To bridge this gap, ASL-MDFD integrates
SSL, adversarial robustness, and multimodal fusion into a
unified framework, achieving superior cross-dataset and cross-
GAN performance.

III. METHODOLOGY

The proposed ASL-MDFD framework integrates
multimodal feature learning, self-supervised pretext tasks,
and adversarial training to improve deepfake detection,
especially in cross-dataset and cross-GAN scenarios. The
overall framework is shown in Fig. 1, highlighting SSL pretext



tasks, PGD-based robustness, and cross-modal attention fusion

Fig. 1. Overview of the proposed ASL-MDFD architecture. The
framework integrates self-supervised pretext tasks, adversarial
training, and multimodal fusion across visual, audio, and
temporal streams. Features from each stream are fused through
cross-modal attention before classification.

3.1 Multimodal Architecture
ASL-MDFD adopts tri-stream architecture, where each
stream focuses on a specific modality: visual, audio, or
temporal. These components capture complementary evidence
of manipulation across different domains.

e Visual Stream:

RGB video frames are passed through a modified
ResNet-50 network, pretrained on ImageNet and
fine-tuned for forgery detection. Spatial fidelity is
preserved using adaptive pooling, while attention
mechanisms prioritize high-impact regions like eyes
and mouth. This stream is especially sensitive to
subtle texture artifacts and lighting inconsistencies,
such as those introduced by StyleGANS3.

e Audio Stream:
Audio segments are transformed into mel-
spectrograms and processed via a 1D convolutional
network designed to capture pitch and timbre patterns
over time. This stream can identify synthetic voice
patterns and glitches—Tlike robotic tones or unnatural
frequency transitions—typically found in audio
generated by models like Wave GAN.

e Temporal Stream:

Motion information is extracted using optical flow
algorithms across video frame sequences. These
motion vectors are passed into a ConvLSTM encoder
that models dynamic patterns, such as blinking or
head movements. Irregular or frozen dynamics often
reveal deep-fake manipulations in this modality.

e Fusion Module:

The outputs of the three modality-specific streams are
combined using a cross-modal attention mechanism.
This fusion dynamically adjusts the importance of
each stream based on their relevance to the current
input. For example, if the audio is missing or
corrupted, the visual and temporal streams receive
greater emphasis.

3.2 Self-Supervised Learning

To reduce overfitting and improve generalization, ASL-
MDFD incorporates self-supervised tasks during training.
These tasks do not require manual labels and encourage the
network to focus on underlying structural or semantic
properties of the data.

e Rotation Prediction:
The model is trained to recognize image orientations
(e.g., 0°,90°, etc.). This task helps the network
understand natural object geometry and spatial
layout, which are often distorted in GAN-generated
images.

e Patch Shuffling Recovery:
Images are divided into small patches and shuffled
randomly. The model is then asked to recover the
original layout, which forces it to learn structural
integrity and spot disruptions usefully when detecting
fake images with misaligned or inconsistent features.

e Audio-Visual Contrastive Learning:
This task trains the model to associate synchronized
visual and audio pairs (e.g., lip movement and
speech). It helps identify mismatches often seen in
lip-synced deepfakes and improves robustness in
real-world audio-visual manipulations.

3.3 Adversarial Training

To increase the model’s robustness against novel and
adaptive threats, adversarial examples are introduced during
training. These are slightly perturbed inputs designed to imitate
the visual and statistical patterns of advanced GANs and
diffusion models.

Perturbations are applied iteratively to input frames using
gradient-based techniques, simulating realistic distortions. By
exposing the model to such adversarial samples during training,
it becomes more resilient to attacks and generalizes better to
unseen manipulation methods.

3.4 Combined Training Objective
ASL-MDEFD is trained with a loss function that balances
three components:

1. Classification Loss: Guides the
distinguishing real from fake inputs.

2. Self-Supervised Losses: Encourage learning of robust
internal representations from rotation, patch recovery,
and contrastive tasks.

3. Adversarial Loss: Penalizes incorrect predictions on
adversarial perturbed examples.

The weighting of these components is tuned through
validation experiments to ensure balanced learning across tasks.

model in

IV. EXPERIMENTS

To evaluate the effectiveness of the proposed ASL-MDFD
framework, we conduct extensive experiments across a variety
of datasets, deepfake generation methods, and comparison
baselines. The focus is on assessing cross-dataset
generalization, robustness to unseen GAN architectures, and
ablation of key components.

4.1 Datasets



We use both benchmark datasets and GAN-generated samples
for training and evaluation, ensuring coverage of various
manipulation styles and resolutions. Table I summarizes the
datasets used for evaluating cross-GAN and cross-dataset
generalization.

Table I. Summary of datasets used for training and evaluation.

Dataset

#Video | Train/Val | Sour
[3 [Test ce
Split

Modality Purpose

FaceFore
nsics++

1000 70/15/115 | GAN-

based

Visual Training

DFDC

Visual + | 3000 70/15/15 | Real- | Validation

Audio world

FakeAVC
eleb

Audio- 2000 70/15/15 | Cross
Visual -
modal

Testing

Training Datasets:

o FaceForensics++ [17:
A benchmark dataset containing over 1,000
real and 1,000 fake videos generated using
DeepFakes, = FaceSwap, and related
techniques. It includes both low and high-
quality  variants, with  manipulations
introducing identity swaps and subtle visual
artifacts. This dataset is widely used for
training supervised models.

o DFDC (DeepFake Detection Challenge
Dataset) [9]:
Released by Facebook, DFDC includes over
100,000 manipulated videos with diverse
lighting, occlusions, and demographics. A
subset of approximately 23,000 videos is
commonly used for academic research. Its
scale and variety make it ideal for pretext task
learning, particularly in contrastive and self-
supervised settings.

Testing Datasets:

o FaceForensics++ HQ [1] (Intra-Dataset):
The high-quality subset is used for evaluating
performance on the same data distribution the
model was trained on.

o Celeb-DF [2] (Cross-Dataset):
A challenging dataset featuring more
photorealistic forgeries with fewer visible
artifacts, making it a reliable benchmark for
testing generalization beyond training data.

o StyleGAN3 and StarGANv2 [3,10] (Cross-

GAN):
These are used to evaluate the model’s
robustness to entirely different synthesis
methods not seen during training.
StyleGAN3 emphasizes spatial consistency,
while StarGANv2 performs multi-domain
translation.

4.2 Baseline Models

To compare the performance of ASL-MDFD, we include the
following established baselines:

XceptionNet [1]:
A CNN-based model repurposed from image
classification to deepfake detection. It operates only
on visual input and is highly effective on known
datasets but tends to overfit to training-specific
artifacts.

Capsule-Forensics [4]:
A method that uses capsule networks to capture spatial
hierarchies in facial features. It has been shown to
detect high-quality manipulations but lacks robustness
to adversarial distortions.

SSL-CL (Self-Supervised Contrastive Learning)
[6]:

A model trained with contrastive objectives on
unlabeled data. While it improves domain
generalization, it does not account for multimodal
information or adversarial resilience.

AT-Meso [11]:
Applies adversarial training to MesoNet for enhanced
robustness. However, its capacity is limited due to
low-resolution processing and absence of multimodal
inputs.

4.3 Evaluation Metrics

We adopt the following standard metrics to evaluate model
performance:

AUC (Area Under the ROC Curve):
Measures the trade-off between true and false positive
rates. A higher AUC indicates stronger discrimination
between real and fake inputs.

F1-Score:

The harmonic mean of precision and recall,
particularly useful in evaluating imbalanced datasets.
Accuracy:

Percentage of correctly classified samples. While
intuitive, it is less reliable in skewed data settings and
is reported in conjunction with AUC and F1.

4.4 Results

Table II. Performance comparison (AUC %, F1 %) of ASL-
MDFD with state-of-the-art deepfake detection models.

Method Modality | AUC (%) | F1(%) Cross-
Dataset
AUC (%)

XceptionNet | Visual 92.1 90.4 68.5

Capsule- Visual 93.5 91.2 71

Forensics

AT-Meso Visual 95 93.3 74.2

TimeSformer | Visual 95.8 94.5 76.4




ASL-MDFD
(Ours)

Audio + 97.6 96.2 84.7

Visual

As shown in Table 11, ASL-MDFD consistently outperforms
unimodal and transformer-based baselines across all test sets.

Cross-Dataset Generalization
e On Celeb-DF, ASL-MDFD achieves 92.3% AUC,
outperforming XceptionNet by nearly 14%.
e On DFDC, the proposed model reaches an F1-score
of 89.1%, while Capsule-Forensics achieves only
72.4%.
These results demonstrate ASL-MDFD's superior ability to
generalize to new data distributions and manipulation styles.
Cross-GAN Detection
e On StyleGAN3, ASL-MDFD attains an accuracy of

88.7%, significantly outperforming AT-Meso
(74.2%).

e The model also performs reliably on StarGANv2
outputs, identifying structural and semantic

inconsistencies not captured by baseline models.
Ablation Study

Table III. Ablation analysis of ASL-MDFD showing
contributions of each component.

Model Variant | SSL Adv. Multimodal | AUC
Training Fusion (%)

Baseline - - - 92.1
(XceptionNet)

+SSL only v - - 94.2
+ Adv. only - v - 94.9
+ Fusion only - - v 95.3
Full ASL- v v v 97.6
MDFD

The ablation results in Table III confirm that each module—
SSL, adversarial training, and multimodal fusion—contributes
cumulatively to overall performance gains.

To understand the contribution of each component, we perform
controlled ablation experiments:

e  Without Self-Supervised Learning:
Removing SSL tasks leads to a 21% drop in cross-
dataset Fl-score, indicating their importance in
learning robust representations.

e  Without Adversarial Training:
Excluding adversarial perturbations results in an 18%
decrease in AUC, emphasizing their role in improving
generalization against novel forgeries.

4.5 Limitations and Practical Implications
While  ASL-MDFD  demonstrates  improved
generalization across datasets and GAN types, it
currently requires higher computational resources due

to its multimodal tri-stream architecture and
adversarial fine-tuning. Real-time inference and on-
device deployment remain open challenges, which we
plan to address through model compression, pruning,
and knowledge distillation in future work.
Additionally, further validation under noisy or low-
quality input conditions would strengthen the model’s
robustness.

From a practical standpoint, ASL-MDFD contributes
toward reliable content-authentication systems and
multimedia forensics. Its multimodal and self-
supervised design offers a foundation for scalable,
ethically aligned deepfake detection in applications
such as social-media verification, digital-news
validation, and secure identity management. The
framework highlights how integrating adversarial
robustness with multimodal learning can help bridge
the gap between research prototypes and deployable
real-world solutions.

V. CONCLUSION

This study presented ASL-MDFD, an integrated framework
that combines self-supervised learning, adversarial training,
and multimodal fusion for deepfake detection. By jointly
leveraging structural pretext tasks, adversarial robustness
through PGD, and cross-modal cues from visual, audio, and
temporal streams, ASL-MDFD addresses key limitations in
current detection systems—especially their inability to
generalize across unseen GANs and datasets.

Our experimental results across benchmark datasets
demonstrate that this unified approach consistently outperforms
existing methods in both accuracy and generalizability. The
inclusion of self-supervised tasks significantly improves the
model’s ability to capture intrinsic manipulation cues without
heavy reliance on labeled data. Meanwhile, adversarial training
ensures resilience against evolving synthetic media threats. The
multimodal design enhances detection by capturing
inconsistencies that are often missed in unimodal systems.

In future work, we aim to explore lightweight model distillation
techniques for real-time deployment, incorporate NLP-based
semantic analysis for cross-verification of spoken content, and
improve interpretability through attention-based visualization
methods. These steps will further strengthen the practicality and
trustworthiness of deep-fake detection systems in real-
world applications.

The growing sophistication of synthetic media demands equally
advanced detection strategies. ASL-MDFD offers a scalable
and future-proof foundation that adapts to new manipulation
techniques by learning from structure, sound, and motion in a
unified way. By bridging the gap between research and real-



world applicability, this work takes a significant step toward
safeguarding digital authenticity.
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