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Abstract— The rise of hyper-realistic synthetic media generated 

by Generative Adversarial Networks (GANs) and diffusion models 

poses significant challenges to deepfake detection systems, 

particularly in cross-dataset and cross-GAN generalization. In this 

work, we propose ASL-MDFD: a novel framework that unifies 

Adversarial training, Self-Supervised Learning (SSL), and 

Multimodal Fusion to detect deepfakes across diverse sources. Our 

approach leverages rotation prediction, patch shuffling recovery, 

and contrastive audio-visual alignment as pretext tasks to learn 

intrinsic representations without heavy reliance on labels. 

Simultaneously, adversarially perturbed examples generated 

using PGD simulate artifacts from unseen GANs, improving 

model robustness. The multimodal architecture integrates visual, 

audio, and temporal streams using cross-modal attention to detect 

inconsistencies in facial textures, voice artifacts, and motion 

dynamics. Evaluated across FaceForensics++, DFDC, Celeb-DF, 

StyleGAN3, and StarGANv2 datasets, ASL-MDFD achieves state-

of-the-art performance, including 92.3% AUC on Celeb-DF and 

88.7% accuracy on StyleGAN3 fakes, significantly outperforming 

existing baselines. Our results demonstrate the effectiveness of 

combining SSL, adversarial resilience, and multimodal cues in 

building robust, generalizable deepfake detectors. 

Index Terms— Deepfake Detection, Generative Adversarial 

Networks, Self-Supervised Learning, Adversarial Training, 

Multimodal Fusion, Cross-Dataset Generalization 
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I. INTRODUCTION 

The rapid advancement of Generative Adversarial Networks 

(GANs) and diffusion models has enabled the creation of 

highly photorealistic synthetic media—commonly referred to 

as deepfakes. While these technologies provide  

groundbreaking applications in entertainment, design, and 

healthcare, they also present significant threats related to 

misinformation, identity theft, and digital fraud. Deepfakes 

have reached a level of visual and auditory realism that 

challenges both human perception and conventional detection 

systems. 

Despite considerable progress in deepfake detection, existing 

models often exhibit poor generalization—failing to detect 

fakes generated by unseen GAN architectures or tested on 

datasets that differ from their training distribution. For example, 

models trained on FaceForensics++, which includes earlier 

GANs like DeepFakes and FaceSwap, perform significantly 

worse on Celeb-DF, which features more subtle manipulations 

using StyleGAN3 or diffusion-based techniques. These newer 

methods introduce sophisticated artifacts such as fine-grained 

texture inconsistencies, subtle lighting mismatches, and 

stochastic pixel anomalies, which are often missed by models 

tailored to older forgery patterns. 

To address these challenges, we introduce ASL-MDFD—an 

Adversarial Self-supervised Learning framework for 

Multimodal Deepfake Detection. Our approach is built on 

three foundational pillars: 

 

1. Self-Supervised Learning (SSL): 

Through pretext tasks like rotation prediction, 

patch shuffling recovery, and contrastive audio-
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visual alignment, our model learns rich and 

generalizable feature representations without relying 

heavily on labeled data. These tasks encourage 

sensitivity to intrinsic structural and temporal 

inconsistencies common in synthetic content. 

2. Adversarial Training: 

Leveraging Projected Gradient Descent (PGD), we 

simulate adversarial perturbations that mimic artifact 

patterns from advanced GANs and diffusion models.  

3. Multimodal Fusion: 

ASL-MDFD incorporates a tri-stream architecture 

that jointly processes visual, audio, and temporal 

cues. This allows the model to capture 

inconsistencies across modalities—such as 

mismatched lip-syncing, robotic voice patterns, and 

unnatural motion dynamics—providing holistic 

deepfake detection capability. 

 

In empirical evaluations across a diverse suite of benchmarks—

including FaceForensics++, DFDC, Celeb-DF, and synthetic 

data from StyleGAN3 and StarGANv2—our model 

demonstrates superior performance. Notably, ASL-MDFD 

achieves 92.3% AUC on Celeb-DF, outperforming traditional 

supervised models by a substantial margin. 

By combining SSL, adversarial robustness, and multimodal 

reasoning, ASL-MDFD paves the way toward generalizable, 

scalable, and ethically responsible solutions to the deepfake 

detection problem. 

II. RELATED WORK 

2.1 Supervised Deepfake Detection 

Traditional deepfake detection methods have primarily relied 

on supervised learning, where models are trained on labeled 

datasets of real and manipulated media. A prominent example 

is XceptionNet [1], which employs depthwise separable 

convolutions and achieves impressive results—up to 98% 

AUC on FaceForensics++. However, its generalization 

capabilities are limited. When applied to unseen datasets such 

as Celeb-DF [2], XceptionNet's performance degrades 

significantly (65% AUC), revealing its dependence on dataset-

specific artifacts. 

Capsule Networks [8] offer an alternative by modeling part-

whole relationships, such as eye-nose-mouth geometry. These 

spatial hierarchies are effective for high-quality manipulations, 

but capsule-based approaches are vulnerable to perturbations 

introduced by adversarial techniques, especially those 

mimicking unseen GAN-generated noise. 

[1] 2.2 Adversarial Training 

Adversarial training has emerged as a promising defense 

against adversarial examples in classification tasks. The work 

by Madry et al. [6] introduced Projected Gradient Descent 

(PGD) as a reliable attack model for training robust image 

classifiers. However, its application in the context of deepfake 

detection remains limited. PGD does not inherently account for 

the unique artifacts of synthetic media, such as checkerboard 

patterns in ProGAN or texture shifts in StyleGAN3 [3]. 

To address this, AT-Meso [9] applies adversarial training to 

the lightweight MesoNet architecture, aiming to improve 

robustness against synthetic image perturbations. While 

effective in certain settings, AT-Meso is restricted to low-

resolution inputs (e.g., 256×256), and its performance declines 

with high-resolution forgeries such as those produced by 

StyleGAN3 (1024×1024). 

 

2.3 Self-Supervised Learning (SSL) in Media Forensics 

 

Recent advances in Self-Supervised Learning (SSL) have 

highlighted its potential in generalizable representation 

learning. Contrastive learning frameworks such as SimCLR 

[10] use NT-Xent loss to maximize similarity between positive 

pairs (e.g., augmented versions of the same image) and 

dissimilarity between negatives. While effective in visual 

classification, these methods often overlook structure-level 

inconsistencies that are crucial for detecting GAN-based 

manipulations. 

 

Rotation prediction [11] is a simpler SSL task that requires the 

model to predict image orientation (e.g., 0°, 90°, 180°, 270°). It 

encourages the learning of spatial priors and is particularly 

useful for capturing unnatural geometry, such as asymmetries 

in StarGANv2 outputs [5]. However, these approaches remain 

unimodal, missing complementary cues in audio or motion, 

which are critical in video-based deepfakes. 

 

 

2.4 Multimodal Approaches 

To address the limitations of unimodal detection, recent works 

have explored multimodal fusion. Models that combine visual 

and audio modalities, such as CNN-LSTM architectures [12], 

can detect lip-sync mismatches and synthetic speech 

artifacts. Despite their potential, these models often fail when 

tested on sophisticated datasets like DFDC [13], where modern 

GANs accurately align audio-visual streams. 

 

Temporal stream analysis, especially through optical flow 

and ConvLSTMs, has been applied to detect motion 

irregularities such as unnatural blinking or fixed gaze [14]. 

However, many of these approaches treat visual, audio, and 

temporal cues in isolation, without leveraging the synergy that 

cross-modal attention and joint training can provide. 

 

 Research Gap 

In summary, current deepfake detection methods often 

specialize in a single domain—supervised learning, adversarial 

training, or self-supervised pretext tasks—and seldom combine 

modalities. This siloed approach leads to limited generalization, 

especially in real-world scenarios involving unseen GANs or 

diffusion models. To bridge this gap, ASL-MDFD integrates 

SSL, adversarial robustness, and multimodal fusion into a 

unified framework, achieving superior cross-dataset and cross-

GAN performance. 

III. METHODOLOGY 

The proposed ASL-MDFD framework integrates 

multimodal feature learning, self-supervised pretext tasks, 

and adversarial training to improve deepfake detection, 

especially in cross-dataset and cross-GAN scenarios. The 

overall framework is shown in Fig. 1, highlighting SSL pretext 
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tasks, PGD-based robustness, and cross-modal attention fusion 

 
Fig. 1. Overview of the proposed ASL-MDFD architecture. The 

framework integrates self-supervised pretext tasks, adversarial 

training, and multimodal fusion across visual, audio, and 

temporal streams. Features from each stream are fused through 

cross-modal attention before classification. 

 

 

3.1 Multimodal Architecture 

ASL-MDFD adopts tri-stream architecture, where each 

stream focuses on a specific modality: visual, audio, or 

temporal. These components capture complementary evidence 

of manipulation across different domains. 

 

● Visual Stream: 

RGB video frames are passed through a modified 

ResNet-50 network, pretrained on ImageNet and 

fine-tuned for forgery detection. Spatial fidelity is 

preserved using adaptive pooling, while attention 

mechanisms prioritize high-impact regions like eyes 

and mouth. This stream is especially sensitive to 

subtle texture artifacts and lighting inconsistencies, 

such as those introduced by StyleGAN3. 

● Audio Stream: 

Audio segments are transformed into mel-

spectrograms and processed via a 1D convolutional 

network designed to capture pitch and timbre patterns 

over time. This stream can identify synthetic voice 

patterns and glitches—like robotic tones or unnatural 

frequency transitions—typically found in audio 

generated by models like Wave GAN. 

● Temporal Stream: 

Motion information is extracted using optical flow 

algorithms across video frame sequences. These 

motion vectors are passed into a ConvLSTM encoder 

that models dynamic patterns, such as blinking or 

head movements. Irregular or frozen dynamics often 

reveal deep-fake manipulations in this modality. 

● Fusion Module: 

The outputs of the three modality-specific streams are 

combined using a cross-modal attention mechanism. 

This fusion dynamically adjusts the importance of 

each stream based on their relevance to the current 

input. For example, if the audio is missing or 

corrupted, the visual and temporal streams receive 

greater emphasis. 

 
3.2 Self-Supervised Learning 

To reduce overfitting and improve generalization, ASL-

MDFD incorporates self-supervised tasks during training. 

These tasks do not require manual labels and encourage the 

network to focus on underlying structural or semantic 

properties of the data. 

● Rotation Prediction: 

The model is trained to recognize image orientations 

(e.g., 0°, 90°, etc.). This task helps the network 

understand natural object geometry and spatial 

layout, which are often distorted in GAN-generated 

images. 

● Patch Shuffling Recovery: 

Images are divided into small patches and shuffled 

randomly. The model is then asked to recover the 

original layout, which forces it to learn structural 

integrity and spot disruptions usefully when detecting 

fake images with misaligned or inconsistent features. 

● Audio-Visual Contrastive Learning: 

This task trains the model to associate synchronized 

visual and audio pairs (e.g., lip movement and 

speech). It helps identify mismatches often seen in 

lip-synced deepfakes and improves robustness in 

real-world audio-visual manipulations. 

 
3.3 Adversarial Training 

To increase the model’s robustness against novel and 

adaptive threats, adversarial examples are introduced during 

training. These are slightly perturbed inputs designed to imitate 

the visual and statistical patterns of advanced GANs and 

diffusion models. 

Perturbations are applied iteratively to input frames using 

gradient-based techniques, simulating realistic distortions. By 

exposing the model to such adversarial samples during training, 

it becomes more resilient to attacks and generalizes better to 

unseen manipulation methods. 

 
3.4 Combined Training Objective 

ASL-MDFD is trained with a loss function that balances 

three components: 

1. Classification Loss: Guides the model in 

distinguishing real from fake inputs. 

2. Self-Supervised Losses: Encourage learning of robust 

internal representations from rotation, patch recovery, 

and contrastive tasks. 

3. Adversarial Loss: Penalizes incorrect predictions on 

adversarial perturbed examples. 

The weighting of these components is tuned through 

validation experiments to ensure balanced learning across tasks. 

IV. EXPERIMENTS 

To evaluate the effectiveness of the proposed ASL-MDFD 

framework, we conduct extensive experiments across a variety 

of datasets, deepfake generation methods, and comparison 

baselines. The focus is on assessing cross-dataset 

generalization, robustness to unseen GAN architectures, and 

ablation of key components. 

 
4.1 Datasets 
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We use both benchmark datasets and GAN-generated samples 

for training and evaluation, ensuring coverage of various 

manipulation styles and resolutions. Table I summarizes the 

datasets used for evaluating cross-GAN and cross-dataset 

generalization. 

 

 
Table I. Summary of datasets used for training and evaluation. 

 
Dataset Modality #Video

s 
Train/Val
/Test 
Split 

Sour
ce 

Purpose 

FaceFore
nsics++ 

Visual 1000 70/15/15 GAN-
based 

Training 

DFDC Visual + 
Audio 

3000 70/15/15 Real-
world 

Validation 

FakeAVC
eleb 

Audio-
Visual 

2000 70/15/15 Cross
-
modal 

Testing 

 

● Training Datasets: 

o FaceForensics++ [1]: 

A benchmark dataset containing over 1,000 

real and 1,000 fake videos generated using 

DeepFakes, FaceSwap, and related 

techniques. It includes both low and high-

quality variants, with manipulations 

introducing identity swaps and subtle visual 

artifacts. This dataset is widely used for 

training supervised models. 

 

o DFDC (DeepFake Detection Challenge 

Dataset) [9]: 

Released by Facebook, DFDC includes over 

100,000 manipulated videos with diverse 

lighting, occlusions, and demographics. A 

subset of approximately 23,000 videos is 

commonly used for academic research. Its 

scale and variety make it ideal for pretext task 

learning, particularly in contrastive and self-

supervised settings. 

● Testing Datasets: 

o FaceForensics++ HQ [1] (Intra-Dataset): 

The high-quality subset is used for evaluating 

performance on the same data distribution the 

model was trained on. 

o Celeb-DF [2] (Cross-Dataset): 

A challenging dataset featuring more 

photorealistic forgeries with fewer visible 

artifacts, making it a reliable benchmark for 

testing generalization beyond training data. 

o StyleGAN3 and StarGANv2 [3,10] (Cross-

GAN): 

These are used to evaluate the model’s 

robustness to entirely different synthesis 

methods not seen during training. 

StyleGAN3 emphasizes spatial consistency, 

while StarGANv2 performs multi-domain 

translation. 

 
4.2 Baseline Models 

To compare the performance of ASL-MDFD, we include the 

following established baselines: 

● XceptionNet [1]: 

A CNN-based model repurposed from image 

classification to deepfake detection. It operates only 

on visual input and is highly effective on known 

datasets but tends to overfit to training-specific 

artifacts. 

● Capsule-Forensics [4]: 

A method that uses capsule networks to capture spatial 

hierarchies in facial features. It has been shown to 

detect high-quality manipulations but lacks robustness 

to adversarial distortions. 

● SSL-CL (Self-Supervised Contrastive Learning) 

[6]: 

A model trained with contrastive objectives on 

unlabeled data. While it improves domain 

generalization, it does not account for multimodal 

information or adversarial resilience. 

● AT-Meso [11]: 

Applies adversarial training to MesoNet for enhanced 

robustness. However, its capacity is limited due to 

low-resolution processing and absence of multimodal 

inputs. 

 
4.3 Evaluation Metrics 

We adopt the following standard metrics to evaluate model 

performance: 

● AUC (Area Under the ROC Curve): 

Measures the trade-off between true and false positive 

rates. A higher AUC indicates stronger discrimination 

between real and fake inputs. 

● F1-Score: 

The harmonic mean of precision and recall, 

particularly useful in evaluating imbalanced datasets. 

● Accuracy: 

Percentage of correctly classified samples. While 

intuitive, it is less reliable in skewed data settings and 

is reported in conjunction with AUC and F1. 

 
4.4 Results 

 

 

Table II. Performance comparison (AUC %, F1 %) of ASL-

MDFD with state-of-the-art deepfake detection models. 

 

Method Modality AUC (%) F1 (%) Cross-
Dataset 
AUC (%) 

XceptionNet Visual 92.1 90.4 68.5 

Capsule-
Forensics 

Visual 93.5 91.2 71 

AT-Meso Visual 95 93.3 74.2 

TimeSformer Visual 95.8 94.5 76.4 
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ASL-MDFD 
(Ours) 

Audio + 
Visual 

97.6 96.2 84.7 

 

As shown in Table II, ASL-MDFD consistently outperforms 

unimodal and transformer-based baselines across all test sets. 

 

Cross-Dataset Generalization 

● On Celeb-DF, ASL-MDFD achieves 92.3% AUC, 

outperforming XceptionNet by nearly 14%. 

● On DFDC, the proposed model reaches an F1-score 

of 89.1%, while Capsule-Forensics achieves only 

72.4%. 

These results demonstrate ASL-MDFD's superior ability to 

generalize to new data distributions and manipulation styles. 

Cross-GAN Detection 

● On StyleGAN3, ASL-MDFD attains an accuracy of 

88.7%, significantly outperforming AT-Meso 

(74.2%). 

● The model also performs reliably on StarGANv2 

outputs, identifying structural and semantic 

inconsistencies not captured by baseline models. 

 

Ablation Study 

 

Table III. Ablation analysis of ASL-MDFD showing 

contributions of each component. 

 

Model Variant SSL Adv. 
Training 

Multimodal 
Fusion 

AUC 
(%) 

Baseline 
(XceptionNet) 

– – – 92.1 

+ SSL only ✓ – – 94.2 

+ Adv. only – ✓ – 94.9 

+ Fusion only – – ✓ 95.3 
Full ASL-
MDFD 

✓ ✓ ✓ 97.6 

 

The ablation results in Table III confirm that each module—

SSL, adversarial training, and multimodal fusion—contributes 

cumulatively to overall performance gains. 

 

To understand the contribution of each component, we perform 

controlled ablation experiments: 

● Without Self-Supervised Learning: 

Removing SSL tasks leads to a 21% drop in cross-

dataset F1-score, indicating their importance in 

learning robust representations. 

● Without Adversarial Training: 

Excluding adversarial perturbations results in an 18% 

decrease in AUC, emphasizing their role in improving 

generalization against novel forgeries. 

                            

4.5 Limitations and Practical Implications 

While ASL-MDFD demonstrates improved 

generalization across datasets and GAN types, it 

currently requires higher computational resources due 

to its multimodal tri-stream architecture and 

adversarial fine-tuning. Real-time inference and on-

device deployment remain open challenges, which we 

plan to address through model compression, pruning, 

and knowledge distillation in future work. 

Additionally, further validation under noisy or low-

quality input conditions would strengthen the model’s 

robustness. 

From a practical standpoint, ASL-MDFD contributes 

toward reliable content-authentication systems and 

multimedia forensics. Its multimodal and self-

supervised design offers a foundation for scalable, 

ethically aligned deepfake detection in applications 

such as social-media verification, digital-news 

validation, and secure identity management. The 

framework highlights how integrating adversarial 

robustness with multimodal learning can help bridge 

the gap between research prototypes and deployable 

real-world solutions. 

 

 

V. CONCLUSION 

This study presented ASL-MDFD, an integrated framework 

that combines self-supervised learning, adversarial training, 

and multimodal fusion for deepfake detection. By jointly 

leveraging structural pretext tasks, adversarial robustness 

through PGD, and cross-modal cues from visual, audio, and 

temporal streams, ASL-MDFD addresses key limitations in 

current detection systems—especially their inability to 

generalize across unseen GANs and datasets. 

Our experimental results across benchmark datasets 

demonstrate that this unified approach consistently outperforms 

existing methods in both accuracy and generalizability. The 

inclusion of self-supervised tasks significantly improves the 

model’s ability to capture intrinsic manipulation cues without 

heavy reliance on labeled data. Meanwhile, adversarial training 

ensures resilience against evolving synthetic media threats. The 

multimodal design enhances detection by capturing 

inconsistencies that are often missed in unimodal systems. 

In future work, we aim to explore lightweight model distillation 

techniques for real-time deployment, incorporate NLP-based 

semantic analysis for cross-verification of spoken content, and 

improve interpretability through attention-based visualization 

methods. These steps will further strengthen the practicality and 

trustworthiness of deep-fake  detection systems in real-

world applications. 

The growing sophistication of synthetic media demands equally 

advanced detection strategies. ASL-MDFD offers a scalable 

and future-proof foundation that adapts to new manipulation 

techniques by learning from structure, sound, and motion in a 

unified way. By bridging the gap between research and real-
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world applicability, this work takes a significant step toward 

safeguarding digital authenticity. 
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