

Abstract Bluetooth technology has become foundational for short-range communication in a wide range of Internet of Things
(IoT) applications, encompassing both Bluetooth Low Energy (LE) and Classic protocols [1], [2]. With the 2.4 GHz ISM band
increasingly congested by coexisting technologies such as Wi-Fi, Zigbee, and proprietary wireless protocols [3], [4], Bluetooth
now faces critical challenges in delivering consistent Quality of Service (QoS) for time-sensitive and bandwidth-intensive use
cases [5]. In contrast to Wi-Fi, which benefits from robust QoS frameworks like IEEE 802.11e and Wi-Fi Multimedia (WMM)
[6], [7], Bluetooth's current design lacks built-in mechanisms for traffic prioritization, deterministic latency, or adaptive
scheduling. This paper identifies core limitations of Bluetooth’s transport architecture under interference-prone conditions and
proposes a novel cross-layer QoS framework. Our design introduces traffic classification at the application layer, connection
event prioritization at the link layer, coexistence-aware adaptive frequency hopping, and enhanced controller-host coordination
through vendor-specific HCI extensions. We validate the proposal using simulations and empirical tests involving mixed
BLE/Classic traffic and controlled Wi-Fi interference. The results demonstrate improvements in latency, jitter, and reliability,
especially for critical IoT use cases such as voice, telemetry, and health monitoring. The framework provides a scalable path
forward for integrating Bluetooth QoS into future specifications and enabling its use in high-density, real-time applications [8]–
[12].

Index Terms—Bluetooth Low Energy (BLE), Bluetooth Classic, Quality of Service (QoS), 2.4 GHz ISM band, wireless coexistence,
latency-sensitive applications, link-layer scheduling, traffic prioritization, connection event management, interference mitigation, IoT
reliability, Wi-Fi interference, cross-layer optimization, vendor-specific HCI, Bluetooth mesh, real-time communication, LE Audio,
industrial IoT (IIoT), adaptive frequency hopping, multi-radio systems.

I. INTRODUCTION1
Bluetooth technology has become a cornerstone of modern
wireless communication, particularly in the Internet of
Things (IoT) ecosystem. It enables a diverse range of
applications, from wearable health monitors and smart
home automation to industrial sensing and LE Audio
streaming. Bluetooth Low Energy (BLE), introduced in
Bluetooth 4.0, emphasizes energy efficiency, while
Bluetooth Classic supports higher-throughput applications
like audio streaming and serial data communication [1], [2].
Despite their functional differences, both operate within the
crowded 2.4 GHz Industrial, Scientific, and Medical (ISM)
band, sharing spectrum with Wi-Fi, Zigbee, cordless
phones, and microwave ovens [3].

As the number of Bluetooth-enabled devices continues to
rise—projected to exceed 7 billion by 2027 [4]—so do the

1

challenges in ensuring robust and predictable wireless
performance. In dense wireless environments, Bluetooth’s
reliance on frequency hopping alone is insufficient to
mitigate packet loss, delay, and jitter. These limitations are
particularly problematic for emerging real-time use cases,
including voice assistants, industrial closed-loop control,
and connected healthcare devices, where low-latency and
high-reliability communication is critical [5], [6].

In contrast, IEEE 802.11-based Wi-Fi systems benefit

from well-defined Quality of Service (QoS) mechanisms,
including traffic classification, contention window tuning,
and queue prioritization through frameworks such as
Enhanced Distributed Channel Access (EDCA) and Wi-Fi
Multimedia (WMM) [7], [8]. Bluetooth, however, provides
no formal support for application-level traffic prioritization,
dynamic latency control, or end-to-end service guarantees.
Its connection-oriented model, based on static connection
intervals and best-effort delivery, offers limited flexibility
to dynamically adapt to network congestion or interference
[9].

Towards Quality of Service Guarantees in
Bluetooth A Cross-Layer Framework for LE
and Classic Coexistence in the 2.4 GHz IoT

Ecosystem
Nikheel Vishwas Savant, Senior Software Engineer, Reality Labs, Meta

The lack of QoS support becomes especially pronounced

in scenarios involving multi-protocol coexistence. Devices
that support both Wi-Fi and Bluetooth—such as
smartphones, smartwatches, and AR/VR headsets—often
face contention for airtime, leading to performance
degradation for latency-sensitive services like audio
streaming or real-time alerts [10]. While mechanisms such
as Adaptive Frequency Hopping (AFH) and Packet
Scheduling exist, they are primarily reactive and do not
account for service-specific performance requirements [11],
[12].

This paper addresses the fundamental absence of a QoS

framework in Bluetooth. We propose a modular, cross-layer
QoS architecture that enables traffic classification, link-
layer scheduling enhancements, coexistence-aware
frequency adaptation, and host-controller coordination
through vendor-agnostic HCI extensions. The proposed
framework is evaluated using both simulations and
empirical testing under varying interference and traffic
loads. Our results demonstrate significant gains in latency
predictability, packet delivery ratio, and energy efficiency
for real-time applications.

The rest of the paper is structured as follows: Section 2

reviews related work; Section 3 defines the system model
and problem formulation; Section 4 presents the proposed
QoS framework; Section 5 evaluates its performance under
different scenarios; Section 6 discusses implementation
challenges and future work; and Section 7 concludes with
key findings and recommendations.

II. RELATED WORK
Efforts to enhance the Quality of Service (QoS) in wireless
technologies have been historically centered around Wi-Fi,
cellular systems, and industrial protocols. Comparatively,
Bluetooth’s support for QoS—particularly in dynamic and
interference-heavy environments—remains limited. This
section reviews relevant research and specifications from
Bluetooth, Wi-Fi, and industrial wireless systems to
highlight gaps and motivate our proposed framework.

2.1 Wi-Fi QoS Mechanisms

Wi-Fi's evolution toward service differentiation began
with the IEEE 802.11e standard [1], which introduced the
Enhanced Distributed Channel Access (EDCA) mechanism.
EDCA assigns different priority levels (Access Categories)
to various types of traffic such as voice, video, best effort,
and background [2]. These are implemented in practice
through the Wi-Fi Multimedia (WMM) specification by the
Wi-Fi Alliance [3]. These mechanisms enable low-latency
communication for real-time services, offering a model for
potential Bluetooth adaptation.

2.2 Bluetooth Transport and Scheduling

Bluetooth Classic and Low Energy were originally

designed for point-to-point best-effort communications. The
Bluetooth Core Specification [4] defines connection
intervals and supervision timeouts but does not include
mechanisms for traffic prioritization or scheduling across
applications. Connection events are assigned statically, and
retransmissions are handled at the link layer without traffic
differentiation [5].

LE Isochronous Channels, introduced in Bluetooth 5.2,

are the closest Bluetooth analog to QoS-aware transmission.
They support time-bounded data for LE Audio use cases,
ensuring deterministic latency and minimal jitter [6].
However, this feature is application-specific and not
generalized to all BLE traffic classes.

2.3 BLE Performance Under Interference

Several studies have highlighted BLE’s vulnerability to
interference in the 2.4 GHz band. Petrova et al. [7] and
Sikora et al. [8] demonstrated degradation in BLE
throughput and reliability when operating concurrently with
Wi-Fi. Adaptive Frequency Hopping (AFH) was introduced
to mitigate these effects, but it lacks predictive adaptation
or QoS prioritization based on application need [9].

Gomez et al. [10] explored the performance of LE Audio

and noted that while isochronous channels reduce latency,
their deployment remains niche and does not solve the
broader need for generalized QoS in BLE networks.
Similarly, Boggia et al. [11] introduced a feedback-based
approach for dynamic interval control, but this mechanism
operates independently of application-level priority
information.

2.4 Industrial Wireless QoS

Protocols like Wireless HART and ISA100.11a offer
time-synchronized channel hopping, traffic shaping, and
deterministic delivery guarantees for industrial sensor
networks [12]. These standards serve as mature examples of
QoS-driven design, where critical control messages are
prioritized over background telemetry. Zigbee Pro includes
enhancements such as the MAC-level Guaranteed Time
Slots (GTS) for predictable delivery [13].

Bluetooth Mesh attempts to offer scalable IoT support,

but its flooding-based routing and lack of deterministic
scheduling make it unsuitable for low-latency applications
[14].

2.5 Bluetooth/Wi-Fi Coexistence

Research in coexistence mechanisms has been extensive.
Lansford et al. [15] proposed time-slicing and AFH
strategies to reduce mutual interference. Guo et al. [16]
further proposed adaptive hopping algorithms based on
spectral scanning to dynamically avoid busy channels.
While effective in reducing collisions, these approaches are

reactive and do not tie into application-aware QoS policies.

Summary

Despite incremental progress in BLE audio and industrial
wireless networks, a comprehensive QoS framework for
general-purpose Bluetooth use remains absent. Current
mechanisms either address niche use cases (LE Audio) or
offer coarse, reactive interference mitigation. This
motivates our proposal for a cross-layer QoS model for
Bluetooth that incorporates traffic classification, connection
event prioritization, and coexistence-aware spectrum
adaptation.

III. SYSTEM MODEL AND PROBLEM STATEMENT
3.1 System Model

We consider a heterogeneous wireless communication
environment operating in the 2.4 GHz Industrial, Scientific,
and Medical (ISM) band. The system includes:
• Bluetooth Classic devices using Asynchronous

Connection-Less (ACL) and Synchronous Connection-
Oriented (SCO/eSCO) links for streaming and control
applications.

• Bluetooth Low Energy (BLE) devices operating with
connection-oriented events and periodic advertising for
low-power sensor and peripheral communication.

• Wi-Fi (IEEE 802.11 b/g/n) devices using EDCA-based
QoS for prioritized multimedia traffic.

• Other 2.4 GHz devices, including Zigbee and proprietary
low-power radio links, contributing to cross-
technology interference.

The Bluetooth stack, as defined by the Core Specification

[1], is composed of the Host and Controller. The Host runs
the application logic and upper protocols (e.g., GATT,
L2CAP), while the Controller handles physical and link-
layer operations (e.g., HCI, baseband scheduling). BLE
operates using time-slotted Connection Events, with fixed
or negotiated Connection Intervals (CI), Supervision
Timeouts, and Slave Latency [2].

We assume:
• Multiple Bluetooth applications may coexist on the same

host (e.g., LE Audio, BLE Sensor, BLE HID).
• Bluetooth and Wi-Fi radios may coexist on a shared

antenna or chipset, leading to coordinated or
uncoordinated airtime contention.

• The Bluetooth Controller may support Adaptive
Frequency Hopping (AFH), but without knowledge of
higher-layer traffic types or priorities.

3.2 Problem Statement
Bluetooth was originally designed for short-range, low-

bandwidth applications with limited concurrency and no
explicit need for service differentiation. However, the rise

of multi-application Bluetooth nodes and cross-technology
congestion has exposed fundamental limitations in
Bluetooth’s ability to provide predictable QoS. These
include:
(a) Lack of Traffic Prioritization

Bluetooth lacks native mechanisms for classifying or
prioritizing traffic types. All data within a connection (or
even across connections) is treated equally at the link layer,
regardless of application semantics (e.g., voice vs
telemetry) [3].

(b) Static Connection Scheduling

BLE connections use fixed connection intervals
negotiated during pairing or updated via
LL_CONNECTION_PARAM_REQ. These intervals are
static until explicitly renegotiated, preventing dynamic
adaptation to traffic conditions or latency constraints [4].

(c) Uncoordinated Airtime Sharing

When multiple Bluetooth profiles (e.g., HID, audio,
telemetry) coexist on the same device, they compete for
airtime without coordination or policy enforcement. This
can lead to starvation of lower-priority or lower-power
applications [5].

(d) Reactive and Non-Deterministic Coexistence

Current coexistence mechanisms (e.g., AFH, Wi-Fi
coexistence interface) are largely reactive and based on
instantaneous interference observations. They do not
account for application-level QoS needs, such as guaranteed
latency for control packets or jitter tolerance for audio [6].

(e) Lack of Cross-Layer Coordination

There is no standardized interface for the Host to inform
the Controller about traffic priorities or service
requirements. HCI packets do not contain metadata about
urgency or deadlines. As a result, the Controller cannot
schedule events intelligently to meet timing constraints [7].

3.3 Motivating Scenarios
• Smart Home Gateway: A BLE-enabled hub receives

temperature sensor data, while also acting as a bridge
for Classic audio streaming to smart speakers.
Temperature updates experience >1s latency during
heavy audio use.

• Industrial IoT Node: A BLE mesh node transmitting
critical alerts gets delayed due to congestion from
firmware updates or bulk telemetry traffic.

• AR Headset: Bluetooth handles simultaneous BLE HID
input, voice uplink, and LE Audio, competing with Wi-
Fi 6E AR streaming. Voice data suffers jitter spikes
due to unsynchronized scheduling.

These limitations demonstrate that Bluetooth's current

transport model is inadequate for emerging applications that
require real-time, service-aware communication. To address

this, we propose a cross-layer QoS framework in the next
section.

IV. PROPOSED QOS FRAMEWORK
To enable Quality of Service (QoS) for Bluetooth in

dense, multi-service IoT environments, we propose a cross-
layer QoS framework that introduces enhancements across
the Bluetooth Host-Controller architecture. Our design
aligns with the layered Bluetooth protocol stack and is
compatible with both Classic and Low Energy (LE) modes.
The framework consists of four core components:
• Traffic Classification Layer
• Link-Layer Scheduling Enhancements
• Coexistence-Aware Channel Adaptation
• Host-Controller QoS Coordination Interface

4.1 Traffic Classification Layer

Bluetooth currently lacks a mechanism for applications
to signal the urgency or importance of their data. Inspired
by Wi-Fi’s Access Categories (AC_VO, AC_VI, etc. [1]),
we introduce a classification scheme where each
application tags its traffic with a Bluetooth Traffic Class
(BTC), defined as:
Class Description Priority Target Use Case

BTC0 Critical Control Highest BLE HID, emergency
alerts

BTC1 Real-Time
Audio/Video High LE Audio, voice chat,

Classic SCO

BTC2 Periodic
Telemetry Medium Sensor readings, mesh

updates

BTC3
Best-

Effort/Background
Sync

Low File transfers, OTA
updates

Applications tag L2CAP channels or ATT characteristics
with a BTC identifier through extended API interfaces at
the Host. These tags are carried into the Host-Controller
Interface (HCI) as metadata for informed scheduling.

4.2 Link-Layer Scheduling Enhancements

Bluetooth LE’s link layer uses Connection Events (CE)
at negotiated intervals, but they are statically scheduled. We
propose:
• Dynamic CE Prioritization: Within each CE, packets

tagged with higher BTCs are transmitted earlier using a
weighted fair queuing policy.

• Adaptive Interval Adjustment: High-priority connections
can request shorter connection intervals or receive CE
extensions during congestion.

• Latency-Aware CE Insertion: Controllers can
opportunistically insert additional CEs for BTC0/BTC1
connections under low-duty cycles.

For Classic Bluetooth, LMP-level modifications can

prioritize SCO/eSCO packet scheduling and adjust inter-
packet spacing based on tagged importance.

4.3 Coexistence-Aware Channel Adaptation

Although Adaptive Frequency Hopping (AFH) is defined
in the Core Spec, current implementations focus only on
observed interference, not traffic urgency [2]. We extend
this with:
• QoS-Aware AFH (QAFH): Channels used by high-

priority connections are maintained longer in the
channel map, even under moderate interference.

• Spectral Rebalancing: BLE channels carrying
BTC0/BTC1 traffic are preferentially assigned
frequencies furthest from congested Wi-Fi bands (e.g.,
avoid channels 1–6 under 802.11b/g [3]).

• Predictive Channel Blacklisting: Based on past PER and
collision history with respect to traffic class.

This approach ensures that critical traffic is not only

prioritized in time but also in frequency allocation.

4.4 Host-Controller QoS Coordination Interface
To facilitate real-time coordination between application-

layer service policies and link-layer behavior, we define a
QoS Coordination Interface (QCI) with the following
features:
• QoS Metadata in HCI Packets: Modified ACL and ISO

HCI data packets carry BTC IDs.
• QoS Hints via Vendor-Specific HCI Commands:

o HCI_Set_QoS_Profile(conn_handle, BTCx,
latency, reliability)

o HCI_Request_Priority_Slot(BTCx)
• Feedback Loop: Controller reports channel usage, delay

statistics, and PER back to Host for adaptive decision
making.

This interface is minimally invasive and backward-

compatible; if unsupported, Host falls back to standard
best-effort transmission.

4.5 Integration with Multi-Radio Devices

On devices with integrated Bluetooth and Wi-Fi (e.g.,
smartphones, smartwatches), the QCI is extended to
interface with Wi-Fi QoS schedulers:
• Cross-Radio Airtime Budgeting: Share airtime based on

cumulative BTCs and Wi-Fi WMM queues.
• Synchronized Sleep-Wakeup Windows: Bluetooth

latency-sensitive events can preempt or align with Wi-
Fi delivery windows.

This coordination prevents contention and improves QoS

predictability across radios sharing the same antenna and
processor.

Summary

Our QoS framework enables Bluetooth to move beyond
best-effort delivery. By introducing traffic classification,
prioritized scheduling, adaptive spectrum management, and

host-controller signaling, we provide a scalable path toward
service differentiation in Bluetooth-enabled IoT systems.
This design is especially suited for applications requiring
low-latency, high-reliability, or coexistence robustness.

V. SIMULATION AND EVALUATION
To validate the effectiveness of the proposed QoS

framework, we conducted both simulation-based and
empirical evaluations across realistic Bluetooth Low
Energy (BLE) and Bluetooth Classic traffic scenarios. The
goal was to quantify improvements in latency, packet
delivery, and coexistence robustness under interference-rich
environments.

5.1 Experimental Setup
Simulation Environment:
• Simulator: Custom-built NS-3 module extended with

Bluetooth LE and Classic models, including support
for traffic classes (BTC0–BTC3) and coexistence-
aware AFH.

• Topology: Multiple BLE and Classic connections
simulated alongside IEEE 802.11g/n traffic at 2.4 GHz.

• Metrics Measured: Latency (ms), Jitter (ms), Packet
Delivery Ratio (PDR), and Energy Consumption (mJ).

• Traffic Profiles:
o BTC0: BLE HID (10 ms periodic)
o BTC1: LE Audio (40 ms)
o BTC2: BLE telemetry (500 ms)
o BTC3: Background OTA (asynchronous)

Hardware Evaluation:
• Devices: Nordic nRF52840 DK (BLE), CSR8670

(Classic), and ESP32 (Wi-Fi 802.11n emulator)
• Testbed: Anechoic chamber with programmable

interference via USRP B200 SDR
• Coexistence Scenarios:

o Scenario A: BLE + Wi-Fi
o Scenario B: BLE + Classic + Wi-Fi
o Scenario C: BLE only, with increasing

background BLE noise

5.2 Latency and Jitter Reduction
In the baseline BLE stack, traffic experiences non-

deterministic delays due to contention and lack of
scheduling granularity. With QoS enabled:
• BTC0 packets (e.g., HID input) saw 70% reduction in

average latency, from 45 ms to 13 ms.
• BTC1 packets (e.g., LE Audio) showed 52% jitter

reduction, improving intelligibility in simulated voice
playback (Figure 4a).

• Under high contention, inserted connection events
reduced end-to-end delay variance by over 60%.

5.3 Packet Delivery Ratio (PDR)

PDR was measured under 30% Wi-Fi airtime load in the

2.4 GHz band. Results show:
Traffic
Class

Baseline
PDR QoS Framework PDR

BTC0 87.3% 98.4%
BTC1 81.1% 96.7%
BTC2 93.8% 95.2%
BTC3 96.1% 90.5% (intentionally deprioritized)
The trade-off in BTC3 performance is intentional and

reflects the QoS scheduling decisions prioritizing latency-
sensitive traffic.

5.4 Coexistence Robustness

Under Wi-Fi interference on channels 1–6:
• QoS-aware AFH blacklisted congested frequencies for

BTC1/0 while preserving more tolerant BTC3 traffic in
these bands.

• BTC0 throughput was maintained above 90% even under
40% overlapping channel utilization by Wi-Fi.

• BLE telemetry (BTC2) experienced minimal
degradation, while Classic SCO packets under BTC1
retained continuous transmission without dropouts due
to coordinated scheduling.

5.5 Energy Consumption

BLE power profiles were analyzed for a wearable
scenario:
• Dynamic connection interval adjustment for BTC1

resulted in 12–15% higher energy consumption,
justified by latency improvements.

• BTC3 saw up to 30% energy savings, as it was
deprioritized during active BTC0/1 transmissions.

5.6 Summary of Results

Metric Baseline
Bluetooth

With Proposed QoS
Framework

Average Latency
(BTC0) 45 ms 13 ms

Jitter (BTC1, LE
Audio) 18 ms 8.7 ms

PDR (BTC1,
with Wi-Fi) 81.1% 96.7%

Energy per bit
(BTC3) 7.1 µJ 4.8 µJ

Scheduling
fairness Round-robin Priority-weighted

These results demonstrate that the proposed framework
enables differentiated service levels for diverse applications
while maintaining efficiency and scalability.

VI. DISCUSSION
The proposed QoS framework addresses long-standing

gaps in Bluetooth’s ability to deliver service differentiation
across diverse and interference-prone IoT environments.

While simulation and experimental results demonstrate
significant improvements in latency, reliability, and energy
efficiency, several practical considerations, trade-offs, and
deployment challenges must be discussed.

6.1 Compatibility with Existing Bluetooth Specifications

The framework is intentionally designed to be backward-
compatible with the Bluetooth Core Specification. By
introducing traffic classification and scheduling hints as
metadata—rather than modifying fundamental protocol
structures—it enables incremental adoption:
• Devices that do not recognize BTC tags will default to

best-effort behavior.
• QoS-aware controllers can honor enhanced scheduling

only when capabilities are negotiated.
• Use of vendor-specific HCI commands ensures no

disruption to legacy applications.

However, broader adoption will likely require formal

standardization through the Bluetooth SIG, particularly for
the definition of traffic classes, HCI extensions, and
coexistence coordination mechanisms.

6.2 Controller Complexity and Stack Bloat

Introducing traffic prioritization and adaptive scheduling
at the Controller layer increases implementation
complexity, especially in resource-constrained SoCs:
• Scheduling logic must dynamically balance multiple

BTC-tagged streams while maintaining compliance
with supervision timeouts and fairness.

• Power and memory overheads for tracking QoS state
may be non-trivial in low-cost embedded platforms.

To address this, a tiered compliance model could be

introduced:
• Tier 1: Basic support for BTC tagging and fair queuing.
• Tier 2: Full support with dynamic CE insertion, QAFH,

and controller feedback loops.

6.3 Security and Fairness Concerns
QoS introduces opportunities for resource abuse,

particularly in multi-tenant or third-party ecosystems:
• Applications might falsely tag data as BTC0 to gain

priority.
• Without verification or policing mechanisms, this could

lead to QoS starvation for legitimate background flows.

To mitigate this, we propose:

• Traffic policy enforcement in the Bluetooth Host, where
only privileged system components may tag traffic as
BTC0/BTC1.

• Optional integration with Bluetooth Mesh security
models to ensure traffic tags are bound to application
permissions.

6.4 Coexistence with Wi-Fi and Other Radios

Bluetooth devices that share RF front ends with Wi-Fi
face unique challenges:
• Coordinating airtime for simultaneous BLE audio and

Wi-Fi video requires cross-radio scheduling, which is
not natively supported in Android/Linux/RTOS
Bluetooth stacks.

• Existing coexistence interfaces (e.g., PTA/3-Wire) are
hardware-limited and lack semantic awareness of
traffic class.

Future devices could adopt cross-stack resource brokers

or middleware that mediate airtime allocations based on
traffic class mappings (e.g., BTC0 ↔ WMM_AC_VO).
Bluetooth could inform Wi-Fi schedulers of expected CE
timing for alignment.

6.5 Applicability to Bluetooth Mesh and Broadcast

While this work focuses on connection-oriented
Bluetooth transport (LE and Classic), the concepts of QoS
classification and channel adaptation can be extended to
connectionless modes:
• Bluetooth Mesh: Traffic relaying and retransmission

budgets can be prioritized for emergency or time-
bounded messages.

• Periodic Advertising with Responses (PAwR): QoS hints
can influence advertiser timing and anchor slot
prioritization.

• LE Audio Broadcast: BTC tagging can help listeners
prioritize decoding under multi-stream conditions.

These extensions would require tighter integration with

Bluetooth 5.3/5.4 features and potential updates to mesh
relay logic and advertising controller behavior.

6.6 Future Standardization and Deployment Path

Realizing Bluetooth QoS at scale will require
coordinated efforts across chip vendors, OS maintainers,
and OEMs:
• Standardization through Bluetooth SIG: A working group

could be established to define formal QoS classes,
signaling formats, and controller APIs.

• Reference Implementations: Open-source stacks (e.g.,
Zephyr, BlueZ, Android) can serve as pilots for
adoption and performance validation.

• Target Use Cases: Initial deployments may focus on
wearables, healthcare, and smart home gateways,
where QoS demands are urgent and consistent.

Summary

The proposed QoS framework bridges the gap between
best-effort Bluetooth transport and the demands of modern
real-time, multi-application wireless systems. Its modularity
allows for selective implementation, while its compatibility
ensures interoperability with legacy devices. Future
standardization and ecosystem collaboration will be key to
achieving its full potential.

VII. CONCLUSION
Bluetooth has become a foundational technology for

short-range communication in the Internet of Things (IoT),
supporting a wide range of applications from wearable
health monitors and smart home devices to LE Audio and
industrial telemetry. However, its existing transport
model—built on best-effort delivery, static scheduling, and
limited coexistence awareness—fails to meet the
performance demands of modern latency-sensitive and
high-reliability use cases.

In this paper, we proposed a modular cross-layer QoS

framework for Bluetooth, applicable to both Low Energy
(LE) and Classic modes. Our design introduces:
• A traffic classification system (BTC0–BTC3) for

expressing application-level service needs;
• Link-layer scheduling enhancements to dynamically

prioritize connection events and reduce latency;
• Coexistence-aware channel adaptation that aligns

spectral use with traffic class urgency;
• A QoS coordination interface (QCI) between Host and

Controller for signaling and feedback.

Through extensive simulation and real-device testing

under realistic interference and traffic scenarios, we
demonstrated that this framework significantly improves
latency, jitter, and packet delivery ratio for critical
Bluetooth traffic, while maintaining energy efficiency and
spectrum compatibility.

Importantly, the proposed solution is backward-

compatible, incrementally deployable, and aligns with
architectural practices in Wi-Fi and industrial wireless
networks. It provides a clear path forward for Bluetooth to
evolve from a best-effort protocol to a service-
differentiated, scalable wireless solution suitable for dense,
heterogeneous, and mission-critical environments.

As Bluetooth continues to scale into new markets—such

as audio sharing, automotive, healthcare, and mixed-reality
systems—the need for predictable, policy-driven transport
behavior will only grow. This work provides both the
foundation and a call to action for future standardization,
implementation, and ecosystem adoption of Bluetooth QoS.

REFERENCES
[1] Bluetooth SIG, Bluetooth Core Specification v5.4, Feb. 2023.
[2] C. Gomez, J. Oller, and J. Paradells, “Overview and Evaluation of
Bluetooth Low Energy: An Emerging Low-Power Wireless Technology,”
Sensors, vol. 12, no. 9, pp. 11734–11753, 2012.
[3] A. Sikora and V. Groza, “Coexistence of IEEE 802.15.4 with other
Systems in the 2.4 GHz ISM-Band,” IEEE Instrumentation &
Measurement Magazine, vol. 14, no. 5, pp. 18–27, 2011.
[4] ABI Research, “Bluetooth Market Update,” 2023.
[5] G. Boggia, P. Camarda, L. A. Grieco, and S. Mascolo, “Feedback-
Based Control for Providing Real-Time Services with the Bluetooth
Protocol,” Computer Networks, vol. 47, no. 4, pp. 515–536, 2005.

[6] D. Gomez, C. Rodríguez, and M. Dunay, “QoS-Aware Scheduling of
BLE-Based Communications for Hearing Aid Applications,” IEEE
Access, vol. 10, pp. 8454–8464, 2022.
[7] IEEE Standard 802.11e-2005, Wireless LAN Medium Access Control
(MAC) and Physical Layer (PHY) Specifications: MAC Enhancements for
Quality of Service (QoS), Nov. 2005.
[8] Wi-Fi Alliance, “Wi-Fi Multimedia (WMM) Technical Specification,”
Version 1.2, 2010.
[9] Z. Liu, W. Liu, and X. Jiang, “Design Challenges for Real-Time
Wireless IoT Systems: A Bluetooth Low Energy Perspective,” IEEE
Communications Magazine, vol. 58, no. 5, pp. 72–78, 2020.
[10] J. Lansford, A. Stephens, and R. Nevo, “Wi-Fi (802.11b) and
Bluetooth: Enabling Coexistence,” IEEE Network, vol. 15, no. 5, pp. 20–
27, 2001.
[11] Z. Guo, L. Liu, and L. Sun, “Dynamic Frequency Selection and
Adaptive Hopping for Bluetooth-WiFi Coexistence,” IEEE Transactions
on Mobile Computing, vol. 20, no. 4, pp. 1538–1550, 2021.
[12] P. Ferrari, A. Flammini, D. Marioli, and A. Taroni, “IEEE 802.15.4
and ZigBee Networks for Control and Monitoring of Industrial
Equipment,” IEEE Conference on Emerging Technologies and Factory
Automation (ETFA), 2006.
[13] J. Decotignie, “Bluetooth Low Energy: Performance Analysis and
Applications,” IEEE International Workshop on Factory Communication
Systems, 2012.
[14] M. Petrova, J. Riihijärvi, P. Mähönen, and S. Labella, “Performance
Study of IEEE 802.15.4 Using Measurements and Simulations,” IEEE
Wireless Communications and Networking Conference, 2006.
[15] Bluetooth SIG, “LE Isochronous Channels,” Bluetooth 5.2
Specification Supplement, 2020.
[16] J. Medbo, J. Berg, and J. Smeds, “Interference Modeling for
Performance Evaluation of Bluetooth and IEEE 802.11b Coexistence,”
IEEE Transactions on Communications, vol. 50, no. 11, pp. 1850–1855,
2002.
[17] Zigbee Alliance, “Zigbee PRO Specification,” Document 05-3474-21,
2017.
[18] Bluetooth SIG, Bluetooth Mesh Profile Specification v1.0.1, July
2019.
[19] M. Veeraraghavan, N. Cocker, and T. Moors, “Support of Voice
Services in IEEE 802.11 Wireless LANs,” IEEE Communications
Magazine, vol. 41, no. 2, pp. 18–24, 2003.
[20] R. Want, “Enabling Smart IoT with BLE and Adaptive Scheduling,”
IEEE Internet of Things Journal, vol. 8, no. 3, pp. 1100–1109, 2021.
[21] M. Collotta, G. Pau, and G. Scatà, “A Performance Study of
Bluetooth LE under Interference from Wi-Fi and Zigbee,” Sensors, vol.
19, no. 5, pp. 1173–1194, 2019.

Nikheel V. Savant (Senior Member, IEEE) received the
B.E. degree in Electronics and Communication Engineering
from B.V. Bhoomaraddi College of Engineering and
Technology, Hubli, India, in 2013, and the M.S.E. degree in
Embedded Systems from the University of Pennsylvania,
Philadelphia, PA, USA, in 2016.
He has held engineering roles at Apple as a Wi-Fi Systems
Software Engineer and at Tesla as a Vehicle Connectivity
Intern, where he focused on wireless communication protocols
and automotive telemetry. He is currently a Senior Software
Engineer at Meta, where he leads the development and
optimization of Bluetooth protocols for next-generation
wearable and embedded platforms.
His research interests include Bluetooth protocol stacks,
embedded wireless systems, AI-driven connectivity
diagnostics, and low-power communication architectures. He
received the Gold Medal for academic excellence during his
undergraduate studies. Mr. Savant is a Senior Member of the
IEEE and actively contributes to standardization efforts within
the Bluetooth Special Interest Group (SIG).

