
 

 
Abstract Bluetooth technology has become foundational for short-range communication in a wide range of Internet of Things 
(IoT) applications, encompassing both Bluetooth Low Energy (LE) and Classic protocols [1], [2]. With the 2.4 GHz ISM band 
increasingly congested by coexisting technologies such as Wi-Fi, Zigbee, and proprietary wireless protocols [3], [4], Bluetooth 
now faces critical challenges in delivering consistent Quality of Service (QoS) for time-sensitive and bandwidth-intensive use 
cases [5]. In contrast to Wi-Fi, which benefits from robust QoS frameworks like IEEE 802.11e and Wi-Fi Multimedia (WMM) 
[6], [7], Bluetooth's current design lacks built-in mechanisms for traffic prioritization, deterministic latency, or adaptive 
scheduling. This paper identifies core limitations of Bluetooth’s transport architecture under interference-prone conditions and 
proposes a novel cross-layer QoS framework. Our design introduces traffic classification at the application layer, connection 
event prioritization at the link layer, coexistence-aware adaptive frequency hopping, and enhanced controller-host coordination 
through vendor-specific HCI extensions. We validate the proposal using simulations and empirical tests involving mixed 
BLE/Classic traffic and controlled Wi-Fi interference. The results demonstrate improvements in latency, jitter, and reliability, 
especially for critical IoT use cases such as voice, telemetry, and health monitoring. The framework provides a scalable path 
forward for integrating Bluetooth QoS into future specifications and enabling its use in high-density, real-time applications [8]–
[12]. 
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reliability, Wi-Fi interference, cross-layer optimization, vendor-specific HCI, Bluetooth mesh, real-time communication, LE Audio, 
industrial IoT (IIoT), adaptive frequency hopping, multi-radio systems. 
 
 
 

I. INTRODUCTION1 
Bluetooth technology has become a cornerstone of modern 
wireless communication, particularly in the Internet of 
Things (IoT) ecosystem. It enables a diverse range of 
applications, from wearable health monitors and smart 
home automation to industrial sensing and LE Audio 
streaming. Bluetooth Low Energy (BLE), introduced in 
Bluetooth 4.0, emphasizes energy efficiency, while 
Bluetooth Classic supports higher-throughput applications 
like audio streaming and serial data communication [1], [2]. 
Despite their functional differences, both operate within the 
crowded 2.4 GHz Industrial, Scientific, and Medical (ISM) 
band, sharing spectrum with Wi-Fi, Zigbee, cordless 
phones, and microwave ovens [3].  

As the number of Bluetooth-enabled devices continues to 
rise—projected to exceed 7 billion by 2027 [4]—so do the 
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challenges in ensuring robust and predictable wireless 
performance. In dense wireless environments, Bluetooth’s 
reliance on frequency hopping alone is insufficient to 
mitigate packet loss, delay, and jitter. These limitations are 
particularly problematic for emerging real-time use cases, 
including voice assistants, industrial closed-loop control, 
and connected healthcare devices, where low-latency and 
high-reliability communication is critical [5], [6].  

 
In contrast, IEEE 802.11-based Wi-Fi systems benefit 

from well-defined Quality of Service (QoS) mechanisms, 
including traffic classification, contention window tuning, 
and queue prioritization through frameworks such as 
Enhanced Distributed Channel Access (EDCA) and Wi-Fi 
Multimedia (WMM) [7], [8]. Bluetooth, however, provides 
no formal support for application-level traffic prioritization, 
dynamic latency control, or end-to-end service guarantees. 
Its connection-oriented model, based on static connection 
intervals and best-effort delivery, offers limited flexibility 
to dynamically adapt to network congestion or interference 
[9].  
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The lack of QoS support becomes especially pronounced 

in scenarios involving multi-protocol coexistence. Devices 
that support both Wi-Fi and Bluetooth—such as 
smartphones, smartwatches, and AR/VR headsets—often 
face contention for airtime, leading to performance 
degradation for latency-sensitive services like audio 
streaming or real-time alerts [10]. While mechanisms such 
as Adaptive Frequency Hopping (AFH) and Packet 
Scheduling exist, they are primarily reactive and do not 
account for service-specific performance requirements [11], 
[12].  

 
This paper addresses the fundamental absence of a QoS 

framework in Bluetooth. We propose a modular, cross-layer 
QoS architecture that enables traffic classification, link-
layer scheduling enhancements, coexistence-aware 
frequency adaptation, and host-controller coordination 
through vendor-agnostic HCI extensions. The proposed 
framework is evaluated using both simulations and 
empirical testing under varying interference and traffic 
loads. Our results demonstrate significant gains in latency 
predictability, packet delivery ratio, and energy efficiency 
for real-time applications.  

 
The rest of the paper is structured as follows: Section 2 

reviews related work; Section 3 defines the system model 
and problem formulation; Section 4 presents the proposed 
QoS framework; Section 5 evaluates its performance under 
different scenarios; Section 6 discusses implementation 
challenges and future work; and Section 7 concludes with 
key findings and recommendations.   

 

II. RELATED WORK 
Efforts to enhance the Quality of Service (QoS) in wireless 
technologies have been historically centered around Wi-Fi, 
cellular systems, and industrial protocols. Comparatively, 
Bluetooth’s support for QoS—particularly in dynamic and 
interference-heavy environments—remains limited. This 
section reviews relevant research and specifications from 
Bluetooth, Wi-Fi, and industrial wireless systems to 
highlight gaps and motivate our proposed framework.  

 
2.1 Wi-Fi QoS Mechanisms  

Wi-Fi's evolution toward service differentiation began 
with the IEEE 802.11e standard [1], which introduced the 
Enhanced Distributed Channel Access (EDCA) mechanism. 
EDCA assigns different priority levels (Access Categories) 
to various types of traffic such as voice, video, best effort, 
and background [2]. These are implemented in practice 
through the Wi-Fi Multimedia (WMM) specification by the 
Wi-Fi Alliance [3]. These mechanisms enable low-latency 
communication for real-time services, offering a model for 
potential Bluetooth adaptation.  

 
2.2 Bluetooth Transport and Scheduling  

 
Bluetooth Classic and Low Energy were originally 

designed for point-to-point best-effort communications. The 
Bluetooth Core Specification [4] defines connection 
intervals and supervision timeouts but does not include 
mechanisms for traffic prioritization or scheduling across 
applications. Connection events are assigned statically, and 
retransmissions are handled at the link layer without traffic 
differentiation [5].  

 
LE Isochronous Channels, introduced in Bluetooth 5.2, 

are the closest Bluetooth analog to QoS-aware transmission. 
They support time-bounded data for LE Audio use cases, 
ensuring deterministic latency and minimal jitter [6]. 
However, this feature is application-specific and not 
generalized to all BLE traffic classes.  

 
2.3 BLE Performance Under Interference  

Several studies have highlighted BLE’s vulnerability to 
interference in the 2.4 GHz band. Petrova et al. [7] and 
Sikora et al. [8] demonstrated degradation in BLE 
throughput and reliability when operating concurrently with 
Wi-Fi. Adaptive Frequency Hopping (AFH) was introduced 
to mitigate these effects, but it lacks predictive adaptation 
or QoS prioritization based on application need [9].  

 
Gomez et al. [10] explored the performance of LE Audio 

and noted that while isochronous channels reduce latency, 
their deployment remains niche and does not solve the 
broader need for generalized QoS in BLE networks. 
Similarly, Boggia et al. [11] introduced a feedback-based 
approach for dynamic interval control, but this mechanism 
operates independently of application-level priority 
information.  

 
2.4 Industrial Wireless QoS  

Protocols like Wireless HART and ISA100.11a offer 
time-synchronized channel hopping, traffic shaping, and 
deterministic delivery guarantees for industrial sensor 
networks [12]. These standards serve as mature examples of 
QoS-driven design, where critical control messages are 
prioritized over background telemetry. Zigbee Pro includes 
enhancements such as the MAC-level Guaranteed Time 
Slots (GTS) for predictable delivery [13].  

 
Bluetooth Mesh attempts to offer scalable IoT support, 

but its flooding-based routing and lack of deterministic 
scheduling make it unsuitable for low-latency applications 
[14].  

 
2.5 Bluetooth/Wi-Fi Coexistence  

Research in coexistence mechanisms has been extensive. 
Lansford et al. [15] proposed time-slicing and AFH 
strategies to reduce mutual interference. Guo et al. [16] 
further proposed adaptive hopping algorithms based on 
spectral scanning to dynamically avoid busy channels. 
While effective in reducing collisions, these approaches are 



 

reactive and do not tie into application-aware QoS policies.  
 
Summary  

Despite incremental progress in BLE audio and industrial 
wireless networks, a comprehensive QoS framework for 
general-purpose Bluetooth use remains absent. Current 
mechanisms either address niche use cases (LE Audio) or 
offer coarse, reactive interference mitigation. This 
motivates our proposal for a cross-layer QoS model for 
Bluetooth that incorporates traffic classification, connection 
event prioritization, and coexistence-aware spectrum 
adaptation. 

 

III. SYSTEM MODEL AND PROBLEM STATEMENT 
3.1 System Model  

We consider a heterogeneous wireless communication 
environment operating in the 2.4 GHz Industrial, Scientific, 
and Medical (ISM) band. The system includes:  
• Bluetooth Classic devices using Asynchronous 

Connection-Less (ACL) and Synchronous Connection-
Oriented (SCO/eSCO) links for streaming and control 
applications.  

• Bluetooth Low Energy (BLE) devices operating with 
connection-oriented events and periodic advertising for 
low-power sensor and peripheral communication.  

• Wi-Fi (IEEE 802.11 b/g/n) devices using EDCA-based 
QoS for prioritized multimedia traffic.  

• Other 2.4 GHz devices, including Zigbee and proprietary 
low-power radio links, contributing to cross-
technology interference.  

 
The Bluetooth stack, as defined by the Core Specification 

[1], is composed of the Host and Controller. The Host runs 
the application logic and upper protocols (e.g., GATT, 
L2CAP), while the Controller handles physical and link-
layer operations (e.g., HCI, baseband scheduling). BLE 
operates using time-slotted Connection Events, with fixed 
or negotiated Connection Intervals (CI), Supervision 
Timeouts, and Slave Latency [2].  

 
We assume:  
• Multiple Bluetooth applications may coexist on the same 

host (e.g., LE Audio, BLE Sensor, BLE HID).  
• Bluetooth and Wi-Fi radios may coexist on a shared 

antenna or chipset, leading to coordinated or 
uncoordinated airtime contention.  

• The Bluetooth Controller may support Adaptive 
Frequency Hopping (AFH), but without knowledge of 
higher-layer traffic types or priorities.  

  
 

3.2 Problem Statement  
Bluetooth was originally designed for short-range, low-

bandwidth applications with limited concurrency and no 
explicit need for service differentiation. However, the rise 

of multi-application Bluetooth nodes and cross-technology 
congestion has exposed fundamental limitations in 
Bluetooth’s ability to provide predictable QoS. These 
include:  
(a) Lack of Traffic Prioritization  

Bluetooth lacks native mechanisms for classifying or 
prioritizing traffic types. All data within a connection (or 
even across connections) is treated equally at the link layer, 
regardless of application semantics (e.g., voice vs 
telemetry) [3].  

 
(b) Static Connection Scheduling  

BLE connections use fixed connection intervals 
negotiated during pairing or updated via 
LL_CONNECTION_PARAM_REQ. These intervals are 
static until explicitly renegotiated, preventing dynamic 
adaptation to traffic conditions or latency constraints [4].  

 
(c) Uncoordinated Airtime Sharing  

When multiple Bluetooth profiles (e.g., HID, audio, 
telemetry) coexist on the same device, they compete for 
airtime without coordination or policy enforcement. This 
can lead to starvation of lower-priority or lower-power 
applications [5].  

 
(d) Reactive and Non-Deterministic Coexistence  

Current coexistence mechanisms (e.g., AFH, Wi-Fi 
coexistence interface) are largely reactive and based on 
instantaneous interference observations. They do not 
account for application-level QoS needs, such as guaranteed 
latency for control packets or jitter tolerance for audio [6].  

 
(e) Lack of Cross-Layer Coordination  

There is no standardized interface for the Host to inform 
the Controller about traffic priorities or service 
requirements. HCI packets do not contain metadata about 
urgency or deadlines. As a result, the Controller cannot 
schedule events intelligently to meet timing constraints [7].  

 
3.3 Motivating Scenarios  
• Smart Home Gateway: A BLE-enabled hub receives 

temperature sensor data, while also acting as a bridge 
for Classic audio streaming to smart speakers. 
Temperature updates experience >1s latency during 
heavy audio use.  

• Industrial IoT Node: A BLE mesh node transmitting 
critical alerts gets delayed due to congestion from 
firmware updates or bulk telemetry traffic.  

• AR Headset: Bluetooth handles simultaneous BLE HID 
input, voice uplink, and LE Audio, competing with Wi-
Fi 6E AR streaming. Voice data suffers jitter spikes 
due to unsynchronized scheduling.  

  
 
These limitations demonstrate that Bluetooth's current 

transport model is inadequate for emerging applications that 
require real-time, service-aware communication. To address 



this, we propose a cross-layer QoS framework in the next 
section.   

 

IV. PROPOSED QOS FRAMEWORK 
To enable Quality of Service (QoS) for Bluetooth in 

dense, multi-service IoT environments, we propose a cross-
layer QoS framework that introduces enhancements across 
the Bluetooth Host-Controller architecture. Our design 
aligns with the layered Bluetooth protocol stack and is 
compatible with both Classic and Low Energy (LE) modes. 
The framework consists of four core components:  
• Traffic Classification Layer  
• Link-Layer Scheduling Enhancements  
• Coexistence-Aware Channel Adaptation  
• Host-Controller QoS Coordination Interface  

  
4.1 Traffic Classification Layer  

Bluetooth currently lacks a mechanism for applications 
to signal the urgency or importance of their data. Inspired 
by Wi-Fi’s Access Categories (AC_VO, AC_VI, etc. [1]), 
we introduce a classification scheme where each 
application tags its traffic with a Bluetooth Traffic Class 
(BTC), defined as:  
Class Description Priority Target Use Case 

BTC0 Critical Control Highest BLE HID, emergency 
alerts 

BTC1 Real-Time 
Audio/Video High LE Audio, voice chat, 

Classic SCO 

BTC2 Periodic 
Telemetry Medium Sensor readings, mesh 

updates 

BTC3 
Best-

Effort/Background 
Sync 

Low File transfers, OTA 
updates 

Applications tag L2CAP channels or ATT characteristics 
with a BTC identifier through extended API interfaces at 
the Host. These tags are carried into the Host-Controller 
Interface (HCI) as metadata for informed scheduling.  

 
4.2 Link-Layer Scheduling Enhancements  

Bluetooth LE’s link layer uses Connection Events (CE) 
at negotiated intervals, but they are statically scheduled. We 
propose:  
• Dynamic CE Prioritization: Within each CE, packets 

tagged with higher BTCs are transmitted earlier using a 
weighted fair queuing policy.  

• Adaptive Interval Adjustment: High-priority connections 
can request shorter connection intervals or receive CE 
extensions during congestion.  

• Latency-Aware CE Insertion: Controllers can 
opportunistically insert additional CEs for BTC0/BTC1 
connections under low-duty cycles.  

 
For Classic Bluetooth, LMP-level modifications can 

prioritize SCO/eSCO packet scheduling and adjust inter-
packet spacing based on tagged importance.  

 
4.3 Coexistence-Aware Channel Adaptation  

Although Adaptive Frequency Hopping (AFH) is defined 
in the Core Spec, current implementations focus only on 
observed interference, not traffic urgency [2]. We extend 
this with:  
• QoS-Aware AFH (QAFH): Channels used by high-

priority connections are maintained longer in the 
channel map, even under moderate interference.  

• Spectral Rebalancing: BLE channels carrying 
BTC0/BTC1 traffic are preferentially assigned 
frequencies furthest from congested Wi-Fi bands (e.g., 
avoid channels 1–6 under 802.11b/g [3]).  

• Predictive Channel Blacklisting: Based on past PER and 
collision history with respect to traffic class.  

 
This approach ensures that critical traffic is not only 

prioritized in time but also in frequency allocation.  
 

4.4 Host-Controller QoS Coordination Interface  
To facilitate real-time coordination between application-

layer service policies and link-layer behavior, we define a 
QoS Coordination Interface (QCI) with the following 
features:  
• QoS Metadata in HCI Packets: Modified ACL and ISO 

HCI data packets carry BTC IDs.  
• QoS Hints via Vendor-Specific HCI Commands:  

o HCI_Set_QoS_Profile(conn_handle, BTCx, 
latency, reliability)  

o HCI_Request_Priority_Slot(BTCx)  
• Feedback Loop: Controller reports channel usage, delay 

statistics, and PER back to Host for adaptive decision 
making.  

 
This interface is minimally invasive and backward-

compatible; if unsupported, Host falls back to standard 
best-effort transmission.   

 
4.5 Integration with Multi-Radio Devices  

On devices with integrated Bluetooth and Wi-Fi (e.g., 
smartphones, smartwatches), the QCI is extended to 
interface with Wi-Fi QoS schedulers:  
• Cross-Radio Airtime Budgeting: Share airtime based on 

cumulative BTCs and Wi-Fi WMM queues.  
• Synchronized Sleep-Wakeup Windows: Bluetooth 

latency-sensitive events can preempt or align with Wi-
Fi delivery windows.  

 
This coordination prevents contention and improves QoS 

predictability across radios sharing the same antenna and 
processor.  

 
Summary  

Our QoS framework enables Bluetooth to move beyond 
best-effort delivery. By introducing traffic classification, 
prioritized scheduling, adaptive spectrum management, and 



 

host-controller signaling, we provide a scalable path toward 
service differentiation in Bluetooth-enabled IoT systems. 
This design is especially suited for applications requiring 
low-latency, high-reliability, or coexistence robustness. 

V. SIMULATION AND EVALUATION 
To validate the effectiveness of the proposed QoS 

framework, we conducted both simulation-based and 
empirical evaluations across realistic Bluetooth Low 
Energy (BLE) and Bluetooth Classic traffic scenarios. The 
goal was to quantify improvements in latency, packet 
delivery, and coexistence robustness under interference-rich 
environments.  

 
5.1 Experimental Setup  
Simulation Environment:  
• Simulator: Custom-built NS-3 module extended with 

Bluetooth LE and Classic models, including support 
for traffic classes (BTC0–BTC3) and coexistence-
aware AFH.  

• Topology: Multiple BLE and Classic connections 
simulated alongside IEEE 802.11g/n traffic at 2.4 GHz.  

• Metrics Measured: Latency (ms), Jitter (ms), Packet 
Delivery Ratio (PDR), and Energy Consumption (mJ).  

• Traffic Profiles:  
o BTC0: BLE HID (10 ms periodic)  
o BTC1: LE Audio (40 ms)  
o BTC2: BLE telemetry (500 ms)  
o BTC3: Background OTA (asynchronous)  

 
Hardware Evaluation:  
• Devices: Nordic nRF52840 DK (BLE), CSR8670 

(Classic), and ESP32 (Wi-Fi 802.11n emulator)  
• Testbed: Anechoic chamber with programmable 

interference via USRP B200 SDR  
• Coexistence Scenarios:  

o Scenario A: BLE + Wi-Fi  
o Scenario B: BLE + Classic + Wi-Fi  
o Scenario C: BLE only, with increasing 

background BLE noise  
  
 

5.2 Latency and Jitter Reduction  
In the baseline BLE stack, traffic experiences non-

deterministic delays due to contention and lack of 
scheduling granularity. With QoS enabled:  
• BTC0 packets (e.g., HID input) saw 70% reduction in 

average latency, from 45 ms to 13 ms.  
• BTC1 packets (e.g., LE Audio) showed 52% jitter 

reduction, improving intelligibility in simulated voice 
playback (Figure 4a).  

• Under high contention, inserted connection events 
reduced end-to-end delay variance by over 60%.  

  
 

5.3 Packet Delivery Ratio (PDR)  

 
PDR was measured under 30% Wi-Fi airtime load in the 

2.4 GHz band. Results show:  
Traffic 
Class 

Baseline 
PDR QoS Framework PDR 

BTC0 87.3% 98.4% 
BTC1 81.1% 96.7% 
BTC2 93.8% 95.2% 
BTC3 96.1% 90.5% (intentionally deprioritized) 
The trade-off in BTC3 performance is intentional and 

reflects the QoS scheduling decisions prioritizing latency-
sensitive traffic.  
 
5.4 Coexistence Robustness  

Under Wi-Fi interference on channels 1–6:  
• QoS-aware AFH blacklisted congested frequencies for 

BTC1/0 while preserving more tolerant BTC3 traffic in 
these bands.  

• BTC0 throughput was maintained above 90% even under 
40% overlapping channel utilization by Wi-Fi.  

• BLE telemetry (BTC2) experienced minimal 
degradation, while Classic SCO packets under BTC1 
retained continuous transmission without dropouts due 
to coordinated scheduling.  

 
5.5 Energy Consumption  

BLE power profiles were analyzed for a wearable 
scenario:  
• Dynamic connection interval adjustment for BTC1 

resulted in 12–15% higher energy consumption, 
justified by latency improvements.  

• BTC3 saw up to 30% energy savings, as it was 
deprioritized during active BTC0/1 transmissions.  

  
5.6 Summary of Results  

Metric Baseline 
Bluetooth 

With Proposed QoS 
Framework 

Average Latency 
(BTC0) 45 ms 13 ms 

Jitter (BTC1, LE 
Audio) 18 ms 8.7 ms 

PDR (BTC1, 
with Wi-Fi) 81.1% 96.7% 

Energy per bit 
(BTC3) 7.1 µJ 4.8 µJ 

Scheduling 
fairness Round-robin Priority-weighted 

These results demonstrate that the proposed framework 
enables differentiated service levels for diverse applications 
while maintaining efficiency and scalability. 

VI. DISCUSSION 
The proposed QoS framework addresses long-standing 

gaps in Bluetooth’s ability to deliver service differentiation 
across diverse and interference-prone IoT environments. 



While simulation and experimental results demonstrate 
significant improvements in latency, reliability, and energy 
efficiency, several practical considerations, trade-offs, and 
deployment challenges must be discussed.  

 
6.1 Compatibility with Existing Bluetooth Specifications  

The framework is intentionally designed to be backward-
compatible with the Bluetooth Core Specification. By 
introducing traffic classification and scheduling hints as 
metadata—rather than modifying fundamental protocol 
structures—it enables incremental adoption:  
• Devices that do not recognize BTC tags will default to 

best-effort behavior.  
• QoS-aware controllers can honor enhanced scheduling 

only when capabilities are negotiated.  
• Use of vendor-specific HCI commands ensures no 

disruption to legacy applications.  
 
However, broader adoption will likely require formal 

standardization through the Bluetooth SIG, particularly for 
the definition of traffic classes, HCI extensions, and 
coexistence coordination mechanisms.  

 
6.2 Controller Complexity and Stack Bloat  

Introducing traffic prioritization and adaptive scheduling 
at the Controller layer increases implementation 
complexity, especially in resource-constrained SoCs:  
• Scheduling logic must dynamically balance multiple 

BTC-tagged streams while maintaining compliance 
with supervision timeouts and fairness.  

• Power and memory overheads for tracking QoS state 
may be non-trivial in low-cost embedded platforms.  

 
To address this, a tiered compliance model could be 

introduced:  
• Tier 1: Basic support for BTC tagging and fair queuing.  
• Tier 2: Full support with dynamic CE insertion, QAFH, 

and controller feedback loops.  
  

6.3 Security and Fairness Concerns  
QoS introduces opportunities for resource abuse, 

particularly in multi-tenant or third-party ecosystems:  
• Applications might falsely tag data as BTC0 to gain 

priority.  
• Without verification or policing mechanisms, this could 

lead to QoS starvation for legitimate background flows.  
 
To mitigate this, we propose:  

• Traffic policy enforcement in the Bluetooth Host, where 
only privileged system components may tag traffic as 
BTC0/BTC1.  

• Optional integration with Bluetooth Mesh security 
models to ensure traffic tags are bound to application 
permissions.  

  
6.4 Coexistence with Wi-Fi and Other Radios  

Bluetooth devices that share RF front ends with Wi-Fi 
face unique challenges:  
• Coordinating airtime for simultaneous BLE audio and 

Wi-Fi video requires cross-radio scheduling, which is 
not natively supported in Android/Linux/RTOS 
Bluetooth stacks.  

• Existing coexistence interfaces (e.g., PTA/3-Wire) are 
hardware-limited and lack semantic awareness of 
traffic class.  

 
Future devices could adopt cross-stack resource brokers 

or middleware that mediate airtime allocations based on 
traffic class mappings (e.g., BTC0 ↔ WMM_AC_VO). 
Bluetooth could inform Wi-Fi schedulers of expected CE 
timing for alignment.  
 
6.5 Applicability to Bluetooth Mesh and Broadcast  

While this work focuses on connection-oriented 
Bluetooth transport (LE and Classic), the concepts of QoS 
classification and channel adaptation can be extended to 
connectionless modes:  
• Bluetooth Mesh: Traffic relaying and retransmission 

budgets can be prioritized for emergency or time-
bounded messages.  

• Periodic Advertising with Responses (PAwR): QoS hints 
can influence advertiser timing and anchor slot 
prioritization.  

• LE Audio Broadcast: BTC tagging can help listeners 
prioritize decoding under multi-stream conditions.  

 
These extensions would require tighter integration with 

Bluetooth 5.3/5.4 features and potential updates to mesh 
relay logic and advertising controller behavior.  

 
6.6 Future Standardization and Deployment Path  

Realizing Bluetooth QoS at scale will require 
coordinated efforts across chip vendors, OS maintainers, 
and OEMs:  
• Standardization through Bluetooth SIG: A working group 

could be established to define formal QoS classes, 
signaling formats, and controller APIs.  

• Reference Implementations: Open-source stacks (e.g., 
Zephyr, BlueZ, Android) can serve as pilots for 
adoption and performance validation.  

• Target Use Cases: Initial deployments may focus on 
wearables, healthcare, and smart home gateways, 
where QoS demands are urgent and consistent.  

  
Summary  

The proposed QoS framework bridges the gap between 
best-effort Bluetooth transport and the demands of modern 
real-time, multi-application wireless systems. Its modularity 
allows for selective implementation, while its compatibility 
ensures interoperability with legacy devices. Future 
standardization and ecosystem collaboration will be key to 
achieving its full potential. 



 

 

VII. CONCLUSION 
Bluetooth has become a foundational technology for 

short-range communication in the Internet of Things (IoT), 
supporting a wide range of applications from wearable 
health monitors and smart home devices to LE Audio and 
industrial telemetry. However, its existing transport 
model—built on best-effort delivery, static scheduling, and 
limited coexistence awareness—fails to meet the 
performance demands of modern latency-sensitive and 
high-reliability use cases.  

 
In this paper, we proposed a modular cross-layer QoS 

framework for Bluetooth, applicable to both Low Energy 
(LE) and Classic modes. Our design introduces:  
• A traffic classification system (BTC0–BTC3) for 

expressing application-level service needs;  
• Link-layer scheduling enhancements to dynamically 

prioritize connection events and reduce latency;  
• Coexistence-aware channel adaptation that aligns 

spectral use with traffic class urgency;  
• A QoS coordination interface (QCI) between Host and 

Controller for signaling and feedback.  
 
Through extensive simulation and real-device testing 

under realistic interference and traffic scenarios, we 
demonstrated that this framework significantly improves 
latency, jitter, and packet delivery ratio for critical 
Bluetooth traffic, while maintaining energy efficiency and 
spectrum compatibility.  

 
Importantly, the proposed solution is backward-

compatible, incrementally deployable, and aligns with 
architectural practices in Wi-Fi and industrial wireless 
networks. It provides a clear path forward for Bluetooth to 
evolve from a best-effort protocol to a service-
differentiated, scalable wireless solution suitable for dense, 
heterogeneous, and mission-critical environments.  

 
As Bluetooth continues to scale into new markets—such 

as audio sharing, automotive, healthcare, and mixed-reality 
systems—the need for predictable, policy-driven transport 
behavior will only grow. This work provides both the 
foundation and a call to action for future standardization, 
implementation, and ecosystem adoption of Bluetooth QoS. 
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