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Abstract—The proliferation of Wireless Body Area
Networks (WBANs) in remote healthcare monitoring
has introduced unprecedented capabilities for patient
care but also significant security vulnerabilities with
life-threatening implications. Traditional intrusion
detection systems (IDS), often relying on static signa-
tures or simplistic rule-based anomaly detection, are
ill-equipped to handle the dynamic and sophisticated
nature of modern cyber threats, particularly zero-day
attacks. This paper introduces a novel, hybrid, AI-
enhanced IDS framework designed for the resource-
constrained WBAN environment. The proposed sys-
tem integrates a lightweight, on-node filtering mech-
anism with a powerful, centralized, unsupervised
convolutional autoencoder (CAE) deployed on the
network coordinator. This architecture leverages a
rich feature set, including physiological time-series
data and a sophisticated energy consumption pro-
file, to achieve robust detection. Unlike conventional
models that depend on arbitrary thresholds, our
approach employs a data-driven anomaly detection
mechanism based on the CAE’s reconstruction error,
enabling it to identify both known attack patterns and
novel anomalies with high fidelity. The framework is
validated using a benchmark physiological dataset
and simulated attacks. The results demonstrate a
significant advancement over baseline models, achiev-
ing a superior F1-Score of 0.96 and an Area Under
the Curve (AUC) of 0.98, showcasing its efficacy
and potential for securing next-generation medical
WBANs.

I. INTRODUCTION

A WIRELESS Body Area Network (WBAN),
formally defined by the IEEE 802.15.6 stan-

dard, is a network of communicating devices oper-
ating on, in, or around the human body, optimized

for low-power operation [1]. These networks form
a critical technological backbone for modern e-
healthcare, enabling a paradigm shift from reac-
tive, hospital-centric care to proactive, continuous,
and personalized health management. WBANs are
composed of miniature, intelligent sensor nodes,
often called motes, that can be implanted, surface-
mounted, or worn as accessories. These nodes are
capable of monitoring a wide array of physiological
parameters in real-time, such as electrocardiogram
(ECG) signals, blood glucose levels, body tempera-
ture, and blood pressure [2]–[4]. The data collected
by these sensors are transmitted wirelessly to a
central coordinator, which then relays the infor-
mation to healthcare providers for analysis and
intervention.

The applications of this technology are trans-
formative and far-reaching. They are instrumental
in ubiquitous health monitoring (UHM), computer-
assisted rehabilitation, and emergency medical re-
sponse systems (EMRS), allowing for the continu-
ous observation of patients with chronic conditions
like diabetes or heart disease from the comfort
of their homes [1]. In remote or hazardous envi-
ronments, such as military battlefields or disaster
sites, WBANs can provide the only available means
of medical assessment, transmitting vital statis-
tics and images of injuries to off-site physicians
[1]. However, the very characteristics that make
WBANs so effective: their small size, wireless
nature, and close proximity to the human body,
also impose severe operational constraints. Sensor
nodes are fundamentally resource-constrained de-
vices, limited by minimal processing power, scarce
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memory, and, most critically, a finite battery life
[3], [5]. These constraints dictate that any security
solution deployed within a WBAN must be excep-
tionally lightweight and energy-efficient to avoid
compromising the network’s primary function and
longevity.

A. The Criticality of Security in WBANs

The integration of WBANs into critical health-
care workflows elevates cybersecurity from a tech-
nical concern to a matter of patient safety. The data
transmitted within these networks is not only sensi-
tive but also actionable; its integrity and availability
directly influence medical diagnoses and automated
treatments. Consequently, a security breach can
have catastrophic, life-threatening consequences.
Consider, for instance, an implantable pacemaker
that relies on a WBAN to regulate a patient’s
heart rhythm. An attacker who compromises this
network could maliciously alter the device’s pacing
frequency or execute a denial-of-service attack to
halt its operation entirely, potentially leading to a
fatal cardiac event within minutes [1]. Similarly,
tampering with data from an automated insulin
pump could result in a dangerous overdose or
underdose of insulin.

Given these high stakes, the security posture of
a WBAN must be built upon a foundation of core
principles, as identified in foundational and recent
security literature [1], [6]–[8]. These principles
include:

• Confidentiality: Ensuring that sensitive pa-
tient health information (PHI) is protected
from unauthorized disclosure.

• Integrity: Guaranteeing that data remains un-
altered and trustworthy.

• Availability (Dependability): Ensuring that
the network and its data are accessible and
operational when needed.

• Data Authentication: Verifying that data orig-
inates from a legitimate sensor node.

• Data Freshness: Ensuring that received data
is recent and not a replayed message.

Failing to uphold these principles not only endan-
gers individual patients but also erodes the trust
necessary for the widespread adoption of these life-
saving technologies.

B. The Evolving Threat Landscape and Limitations
of Traditional IDS

The threat landscape for WBANs is diverse and
continually evolving. Attackers can target the net-
work at multiple layers with varying objectives,
including fake data injection, data packet flooding
(a form of Denial-of-Service), and illegal access
to health data [1]. A particularly insidious threat
that has gained prominence is the Denial-of-Sleep
attack. Unlike brute-force flooding, this attack in-
volves sending just enough malicious traffic to
prevent low-power sensor nodes from entering their
energy-saving sleep modes. This leads to a rapid
and premature depletion of their batteries, effec-
tively disabling the network by targeting its most
critical resource constraint. Such attacks are subtle
and can be difficult to distinguish from legitimate
network activity using simple traffic volume met-
rics.

Traditional Intrusion Detection Systems (IDS)
are often inadequate for defending against this
sophisticated threat landscape. Signature-based sys-
tems, which rely on a database of known attack
patterns, are inherently incapable of identifying
novel or zero-day attacks [9], [10]. Anomaly-based
systems, while more flexible, have their own draw-
backs. Simple rule-based implementations often
rely on static, manually-defined thresholds for phys-
iological data and battery drain. This approach is
fundamentally flawed; it is brittle, prone to high
rates of false positives (e.g., flagging a naturally
high heart rate during exercise as an anomaly),
and its thresholds are arbitrary and lack empirical
justification. The dynamic and personalized nature
of human physiology requires a more intelligent
and adaptive approach to anomaly detection.

C. The AI Paradigm Shift in WBAN Security

The limitations of traditional IDS have catalyzed
a paradigm shift towards the application of Artifi-
cial Intelligence (AI) and Machine Learning (ML)
for WBAN security. The field has seen a surge in re-
search demonstrating the superiority of data-driven
approaches. Classic algorithms such as Decision
Trees and Support Vector Machines (SVM) offered
improved performance over static rule-based sys-
tems, but the complex, time-series nature of WBAN
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data has led to the dominance of more advanced
Deep Learning (DL) techniques.

Models utilizing Convolutional Neural Networks
(CNNs) and Long Short-Term Memory (LSTM)
networks have proven effective at learning the tem-
poral dependencies in physiological data streams,
making them adept at detecting subtle deviations
that indicate an attack [12]–[14]. More recently,
unsupervised learning methods have gained signif-
icant traction due to their ability to detect zero-
day attacks without requiring labeled attack data for
training. Among these, autoencoders have emerged
as a particularly powerful tool. An autoencoder is
trained to reconstruct normal data, and anomalies
are identified by their high reconstruction error [15],
[16]. This approach is perfectly suited for WBANs,
where normal physiological data is abundant, but
comprehensive, labeled datasets of all possible at-
tacks are nonexistent.

The performance of these modern systems
starkly contrasts with older, rule-based methods.
While simple threshold-based systems may strug-
gle to surpass 75% accuracy, contemporary ML
and DL models consistently report accuracies well
above 90%, with some sophisticated architectures
achieving detection rates of 96% to 99% [13], [16]–
[18]. This significant performance gap underscores
the necessity of moving beyond simple threshold-
ing and embracing AI-driven techniques to create
a viable, state-of-the-art IDS. Table I provides a
comparative summary of prominent approaches.

D. Contribution and Paper Outline

This paper presents a novel, lightweight, and hy-
brid AI-enhanced framework for intrusion detection
in WBANs. The primary contributions of this work
are as follows:

1) A Hybrid AI-Enhanced IDS Framework:
We propose a novel two-layer IDS architec-
ture that combines a lightweight, on-node,
rule-based filter with a powerful, central-
ized, unsupervised convolutional autoencoder
(CAE).

2) Data-Driven Anomaly Thresholding: We
replace arbitrary, static thresholds with a dy-
namic, data-driven approach based on the
CAE’s reconstruction error, providing a math-

ematically sound and empirically validated
detection mechanism.

3) Comprehensive Performance Evaluation:
We validate our model using a real-world
physiological dataset and benchmark its per-
formance against both a baseline and contem-
porary ML models, demonstrating significant
improvements.

4) Analysis of Lightweight Feasibility: We
provide a computational overhead analysis
to argue for the feasibility of deploying our
hybrid model within the resource-constrained
WBAN ecosystem.

The remainder of this paper is structured as follows.
Section II details the WBAN system architecture
and the adversarial model. Section III presents
the mathematical and architectural details of our
proposed AI-enhanced IDS framework. Section IV
describes the experimental setup, dataset, and per-
formance metrics. Section V presents and discusses
the results. Finally, Section VI concludes the paper
and outlines directions for future research.

II. WBAN SYSTEM AND ADVERSARIAL MODEL

A clear definition of the operating environment
and the assumed threat landscape is essential for
designing and evaluating any security system. This
section details the WBAN architecture and formally
defines the capabilities and goals of the adversary
our IDS is designed to counter.

A. WBAN Architecture

The WBAN ecosystem is modeled as a hier-
archical, three-tier architecture, a structure widely
adopted in the literature [1], [2], [19]. Figure 1
illustrates this architecture.

Fig. 1. WBAN System Architecture. Tier 1 consists of on-
body sensors. Tier 2 is the Body Network Coordinator (BNC),
which hosts the AI-IDS. Tier 3 includes external networks and
healthcare providers.
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TABLE I
COMPARATIVE SUMMARY OF RECENT IDS APPROACHES

Study/Model Methodology Accuracy/F1-Score Key Limitation/Feature

Simple Rule-Based IDS [1] Static Thresholds on Vitals/Battery ∼73% Accuracy Brittle, high false positives, not
adaptive.

SVM/RF Models [11], [24] Supervised ML (SVM, Random
Forest)

90-95% Accuracy Requires labeled attack data, less
effective against zero-day attacks.

CNN/LSTM Models [13],
[14]

Supervised DL (CNN, LSTM) 96-99% Accuracy Learns temporal patterns, but still
requires labeled data.

Autoencoder Models [15],
[16]

Unsupervised DL (Autoencoder) ∼96% F1-Score Detects zero-day attacks, does not
require labeled attack data.

Proposed Hybrid AI-IDS Hybrid (Rules + Unsupervised
CAE)

98.7% Accuracy, 0.96
F1-Score

Lightweight, adaptive, detects
zero-day attacks, data-driven
threshold.

• Tier 1: Intra-WBAN Communication. This
core sensing layer consists of low-power sen-
sor nodes (motes) positioned on the patient’s
body, each containing a microcontroller, sen-
sors, a battery, and a transceiver [1].

• Tier 2: Inter-WBAN Communication. At
the center is a more powerful Body Network
Coordinator (BNC), such as a smartphone or
dedicated device. It serves as the central hub,
collecting and processing data from all Tier 1
nodes. Due to its greater computational power,
the BNC hosts the main AI-based detection
engine (the Convolutional Autoencoder).

• Tier 3: Beyond-WBAN Communication.
This tier encompasses external systems like
hospital servers, cloud platforms, and clinician
terminals [1], [16]. The security of this tier is
critical, as a compromise here can undermine
the entire WBAN’s integrity. The scope of this
paper is focused on securing Tiers 1 and 2, but
the threat model considers attacks originating
from a compromised Tier 3.

For communication, we assume a star topology,
where all sensor nodes communicate directly with
the central BNC. This topology is common in
WBANs as it is simpler and more energy-efficient
for short-range communication than mesh topolo-
gies [18]. The underlying communication protocol
is based on the IEEE 802.15.6 standard, which
is specifically designed for WBANs and offers
superior optimizations for this domain compared to
protocols like Zigbee or Bluetooth [19].

B. Adversarial Model

We assume an adversary who can operate both
passively and actively within the wireless range of
the WBAN. The adversary’s goals are to compro-
mise the network’s data integrity, availability, or
confidentiality. To achieve these goals, the adver-
sary can launch several types of attacks:

• Compromise Data Integrity: An attacker
could compromise data not just by altering
it in transit, but by exploiting vulnerabilities
in the presentation layer. A persistent Cross-
Site Scripting (XSS) flaw in a clinician’s web
portal, for example, could allow an attacker
to inject scripts that maliciously alter how
physiological data is displayed, leading to mis-
diagnosis [21].

• Degrade Availability: The adversary seeks to
disrupt the network via attacks like Flooding
(DoS), which bombards a target with spurious
packets, or the more stealthy Energy-Depletion
(Denial-of-Sleep) Attack, which sends low-
rate packets to prevent nodes from entering
sleep states, causing rapid battery drain.

• Breach Confidentiality: An attacker attempts
to intercept communications or gain unautho-
rized access to data. Vulnerabilities in manage-
ment interfaces can facilitate this; for instance,
an injected script from an XSS flaw could
steal a doctor’s session cookies, allowing the
attacker to impersonate a legitimate user and
access the patient’s entire data history [22].

• Inject Malicious Data from a Compromised
Source: While many threats target the wire-
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less link directly, a sophisticated adversary
might compromise the backend infrastructure
in Tier 3. A vulnerability in a connected
web service, such as a Server-Side Request
Forgery (SSRF), could lead to a full cloud
infrastructure takeover, providing the attacker
with a powerful position to inject malicious
commands or false data into the WBAN [20].

III. PROPOSED AI-ENHANCED IDS
FRAMEWORK

To address the limitations of traditional methods,
we propose a hybrid, two-layer IDS framework that
intelligently distributes detection tasks.

A. Hybrid Detection Architecture

The proposed architecture is designed to be both
effective and efficient. The data processing and
detection flow is illustrated in Figure 2.

Fig. 2. Proposed Hybrid IDS Framework. Data from sensors
passes through an initial screening filter before being processed
by the CAE-based anomaly detector on the BNC.

• Layer 1: Lightweight Pre-filtering. This first
line of defense is implemented at the BNC
as an initial screening stage. It is a computa-
tionally inexpensive filter that performs basic
sanity checks, using predefined physiological
ranges (e.g., heart rate of 30-250 bpm) to
immediately discard packets containing obvi-
ously corrupt or nonsensical data.

• Layer 2: Unsupervised Anomaly Detection
at the BNC. Data packets that pass the ini-
tial screening are aggregated at the BNC.

The BNC constructs time-series data windows
from one or more sensor streams and feeds
them into the core of the IDS: a Convolutional
Autoencoder (CAE). This AI model is respon-
sible for detecting subtle, complex, and novel
anomalies.

B. Feature Engineering and Data Representation

The model’s performance depends on its input
features. Our framework utilizes a combination
of physiological data and an energy consumption
profile.

• Feature Set:
1) Physiological Data: Time-series data

from sensors such as heart rate monitors
and blood glucose sensors.

2) Energy Consumption Profile (ECP): A
time-series vector representing the en-
ergy consumed by each sensor node over
a sliding window. This feature captures
not only the rate of energy depletion but
also the pattern of consumption.

• Data Preprocessing:
1) Windowing: Continuous data streams

are segmented into fixed-length, overlap-
ping time-series windows to create input
samples.

2) Normalization: Numerical values are
normalized to a common scale () using
min-max scaling, an essential step for
training deep learning models [13]:

xnorm =
x− xmin

xmax − xmin
(1)

where x is the original feature value,
and xmin and xmax are the minimum and
maximum values in the training dataset.

C. Mathematical Model of the Convolutional Au-
toencoder (CAE)

The core of our detection engine is a CAE, an un-
supervised deep learning model ideal for anomaly
detection [9], [16]. The convolutional layers allow
the model to effectively learn spatial and temporal
patterns in the multivariate time-series data [13],
[14].
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Fig. 3. Convolutional Autoencoder (CAE) Architecture. The
encoder maps the input to a latent space, and the decoder
reconstructs the input from the latent representation.

• Model Architecture: The CAE consists of an
encoder and a decoder. A diagram is provided
in Figure 3.

– Encoder: The encoder, fϕ, maps a time-
series input window X to a lower-
dimensional latent representation, z, using
convolutional and pooling layers.

z = fϕ(X) (2)

– Decoder: The decoder, gθ, attempts to
reconstruct the original input X̂ from the
latent representation z using transposed
convolutional and up-sampling layers.

X̂ = gθ(z) = gθ(fϕ(X)) (3)

• Training and Loss Function: The CAE is
trained on normal data only, aiming to make
the reconstructed output X̂ as close as possible
to the input X . This is achieved by minimizing
the Mean Squared Error (MSE) loss function:

L(X, X̂) =
1

n

n∑
i=1

(Xi − X̂i)
2 (4)

where n is the number of data points in the
window X .

• Anomaly Detection Mechanism: For infer-
ence, a new data window, Xtest, is passed
through the trained CAE. The reconstruction
error, Etest = L(Xtest, X̂test), is calculated as

the anomaly score. If Etest exceeds a threshold
τ , the window is classified as an anomaly.
We employ a data-driven approach for deter-
mining τ . After training, the model is run on
a validation set of normal data to generate
a distribution of reconstruction errors. The
threshold τ is then set statistically based on
this distribution:

τ = µE + γ · σE (5)

where µE and σE are the mean and standard
deviation of the normal errors, and γ is a
tunable parameter. This principled method pro-
vides a robust and defensible detection mech-
anism.

IV. EXPERIMENTAL EVALUATION

A rigorous experimental evaluation was con-
ducted to validate the proposed framework.

A. Simulation Environment

Experiments were conducted using the Con-
tiki operating system and its network simulator,
Cooja [1]. This platform is designed for resource-
constrained IoT devices, making it ideal for simu-
lating a WBAN. The simulated network parameters
are detailed in Table II.

TABLE II
SIMULATION PARAMETERS

Parameter Value

Simulator Cooja Network Simulator
Operating System Contiki OS
Number of Sensor Nodes 6
Network Topology Star
Communication Protocol IEEE 802.15.6
BNC Device Emulated gateway node
Transmission Range 10 meters

B. Dataset and Attack Simulation

The use of a real-world dataset lends credibility
to the results.

• Dataset: The PhysioNet MIMIC-II dataset
was used as the source for physiological
data [13], [14]. MIMIC-II is a large, public
database of clinical data from ICU patients,
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widely used for benchmarking healthcare al-
gorithms.

• Data Partitioning: The dataset was parti-
tioned into training (normal data only), valida-
tion (normal data only, for threshold setting),
and testing (mixed normal and attack data)
sets.

• Attack Injection: Attacks were simulated and
injected into the testing set. DoS/Denial-of-
Sleep attacks were simulated by manipulating
the ECP feature to reflect abnormal power
drain patterns. Fake data injection attacks were
simulated by replacing segments of normal
physiological data with both out-of-range and
subtle, in-range anomalous values.

C. Performance Metrics

We use standard classification metrics derived
from the confusion matrix: True Positives (TP),
True Negatives (TN), False Positives (FP), and
False Negatives (FN). These include Accuracy, Pre-
cision, Recall (TPR), F1-Score, and False Positive
Rate (FPR).

D. Benchmarking

To assess our proposed Hybrid AI-IDS, we
benchmark it against several other models:

1) Baseline Rule-Based IDS: A re-
implementation of a simple IDS using
static, manually-defined thresholds to
quantify the improvement achieved by our
AI-enhanced approach.

2) Standard Machine Learning Models:
• Support Vector Machine (SVM): A

powerful classifier that finds an optimal
hyperplane to separate classes.

• Random Forest (RF): An ensemble
method using multiple decision trees to
improve accuracy [11], [24].

3) Ablation Study (CAE-Only Model): To
evaluate the specific contribution of our hy-
brid architecture, we tested the CAE as a
standalone detector, without the initial pre-
filtering layer.

V. RESULTS AND DISCUSSION

This section presents the empirical results of the
experimental evaluation.

A. Performance of the Proposed Hybrid AI-IDS

The proposed Hybrid AI-IDS was evaluated on
the comprehensive test set. The results, summarized
in Table III, demonstrate the high efficacy of the
framework.

TABLE III
PERFORMANCE OF THE PROPOSED HYBRID AI-IDS

Metric Score

Accuracy 0.987
Precision 0.95
Recall (TPR) 0.97
F1-Score 0.96
False Positive Rate (FPR) 0.015

The model achieved an accuracy of 98.7% and
an exceptional F1-Score of 0.96. This high F1-
Score is particularly significant as it shows the
model not only detects a high proportion of attacks
(high recall) but also maintains a low rate of false
alarms (high precision). These results align with
high-performance benchmarks reported in recent
literature for deep learning-based IDS [13], [16].

B. Comparative Analysis and ROC Curve

A comparative analysis was conducted against
the baseline models. The performance of all evalu-
ated models is presented in Table IV.

The results clearly illustrate the superiority of the
proposed Hybrid AI-IDS. The Baseline Rule-Based
IDS, with its static thresholds, performed poorly,
achieving an F1-Score of only 0.68. While the
standard machine learning models (SVM and RF)
offered a significant improvement, our proposed
CAE-based model outperformed them across all
key metrics.

The trade-off between detecting attacks (TPR)
and generating false alarms (FPR) is visualized
in the Receiver Operating Characteristic (ROC)
curve shown in Figure 4. The ROC curve plots
TPR vs. FPR at various threshold settings. The
Area Under the Curve (AUC) provides a single,
aggregate measure of this performance.

The ROC analysis provides compelling evidence
of our model’s effectiveness. The curve for the
proposed Hybrid AI-IDS is positioned very close
to the ideal top-left corner, achieving an AUC of
0.98. In stark contrast, the ROC curve for the
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TABLE IV
COMPARATIVE PERFORMANCE OF IDS MODELS

Model Accuracy F1-Score AUC

Rule-Based IDS (Baseline) 0.731 0.68 0.73
Support Vector Machine (SVM) 0.945 0.91 0.92
Random Forest (RF) 0.962 0.93 0.95
CAE-Only (Ablation) 0.981 0.95 0.97
Proposed Hybrid AI-IDS 0.987 0.96 0.98

Fig. 4. ROC Curve Comparison. The proposed Hybrid AI-
IDS (AUC = 0.98) significantly outperforms the Baseline Rule-
Based IDS (AUC = 0.73) and other ML models.

Baseline Rule-Based IDS lies much closer to the
diagonal line of no-discrimination (AUC = 0.73).
This visualization is a standard tool for quantifying
the significant performance leap achieved by our
AI-driven model.

C. Discussion of Attack Scenarios

• Detection of Energy-Depletion Attacks: The
inclusion of the Energy Consumption Profile
(ECP) was instrumental in detecting Denial-
of-Sleep attacks. The CAE learned the nor-
mal patterns of energy usage associated with
data transmission and sleep cycles. The sus-
tained, low-level energy drain characteristic
of a Denial-of-Sleep attack produced a high
reconstruction error.

• Detection of Sophisticated Data Injection:
The unsupervised nature of the CAE proved
highly effective against subtle data manipula-
tion. In one scenario, an attack artificially sup-
pressed a patient’s heart rate to appear normal.
A simple rule-based system would not flag
this. However, because the CAE was trained
on the patient’s holistic baseline, it recognized
this pattern as inconsistent, resulting in a high
anomaly score and successful detection.

D. Computational Overhead and Lightweight Fea-
sibility

A critical consideration for any WBAN security
solution is its feasibility. While training the CAE is
computationally intensive, it is performed offline.
The critical phase is inference, which occurs in
real-time on the BNC. The inference process is
computationally efficient on modern embedded pro-
cessors (e.g., ARM Cortex-M series). Our analysis
indicates that processing a single data window
takes on the order of milliseconds, well within the
real-time requirements for monitoring physiological
data. This analysis supports our claim that the
proposed system is sufficiently ”lightweight” for
practical deployment on the BNC [25], [26].

VI. CONCLUSION AND FUTURE WORK

A. Conclusion

This paper presented a novel, lightweight, and
hybrid AI-enhanced intrusion detection system de-
signed to secure WBANs. By integrating a simple
pre-filtering mechanism with a sophisticated, unsu-
pervised Convolutional Autoencoder, the proposed
framework achieves a balance between high-fidelity
threat detection and the practical constraints of the
WBAN environment. The system leverages a rich
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feature set, including physiological data and an
energy consumption profile, enabling it to detect
common attacks as well as insidious threats like
Denial-of-Sleep attacks. A key contribution is the
replacement of arbitrary detection thresholds with
a principled, data-driven mechanism based on the
autoencoder’s reconstruction error. Through rigor-
ous evaluation, the proposed framework was shown
to dramatically outperform baseline and standard
machine learning models, achieving an F1-Score
of 0.96 and an AUC of 0.98. This work demon-
strates the immense potential of unsupervised deep
learning for securing life-critical healthcare tech-
nologies.

B. Future Work

While the proposed framework represents a sig-
nificant step forward, several avenues for future
research exist.

• Federated Learning for Enhanced Privacy:
Future work could explore Federated Learning,
a decentralized ML technique where the model
is trained across sensor nodes without ex-
changing raw patient data, enhancing privacy.

• Defense Against Adversarial AI: Research
should investigate the model’s vulnerability
to adversarial attacks, such as data poisoning
or crafting adversarial examples designed to
evade detection. Furthermore, as AI systems
become more complex, the threat landscape
evolves. If future systems were to incorporate
Large Language Models (LLMs) for tasks like
automated report generation, they would intro-
duce new attack vectors like prompt injection,
which could be used to manipulate outputs or
leak sensitive data. Developing robust defenses
for these emerging threats is critical, and edu-
cational frameworks demonstrating such LLM
vulnerabilities can guide this research [23].

• On-Device AI with TinyML: With the rise
of TinyML, it may become feasible to de-
ploy lightweight versions of anomaly detec-
tion models directly onto the sensor nodes
themselves, enabling fully distributed intrusion
detection [25].

• Integration with Blockchain for Data In-
tegrity: The IDS could be integrated with

blockchain technology. Validated sensor read-
ings could be recorded on a private blockchain,
creating an immutable and auditable ledger of
a patient’s physiological history [27].
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