
1

A Threshold Cryptography Framework for Secure
and Resilient Symmetric Key Management in

Multi-Cloud Environments
Dewank Pant, Avijit Kumar, Shruti Lohani, Manan Wason

{dewankpant, avijitkumar2002, shrutilohani9, manan.wason}@gmail.com

Abstract—This paper addresses the critical security and avail-
ability risks inherent in centralized key management systems
(KMS) for cloud data protection. The compromise or failure of
a single KMS can lead to catastrophic data breaches or loss of
access. We propose a decentralized framework to mitigate this
single point of failure. Technology or Method: We introduce the
Threshold Key Management System (TKMS), a novel framework
that leverages threshold cryptography to manage symmetric
encryption keys. The framework employs a (k, n)-threshold
secret sharing scheme to shard a master symmetric key across
n independent Key Management Nodes (KMNs), which are
distributed across multiple cloud provider infrastructures. Key
generation is performed collaboratively using a Distributed Key
Generation (DKG) protocol, eliminating the need for a trusted
dealer. Results: The security analysis demonstrates that TKMS
guarantees key confidentiality as long as fewer than k KMNs are
compromised. The system provides high availability, tolerating
the failure of up to n−k nodes. The projected performance eval-
uation indicates that the cryptographic overhead is manageable
and offers a favorable trade-off for the significantly enhanced
security and resilience. Conclusions: TKMS presents a robust and
fault-tolerant alternative to traditional cloud KMS. By distribut-
ing trust across multiple administrative domains, it significantly
raises the bar for attackers and protects against provider-
level failures. Impact: This work provides a practical blueprint
for building highly secure, resilient, and trust-minimized data
protection services in the cloud, with direct applications in
securing sensitive corporate data, personal information, and
critical infrastructure backups.

Index Terms—Cloud Security, Distributed Key Generation
(DKG), Key Management, Secret Sharing, Symmetric Key En-
cryption, Threshold Cryptography.

I. INTRODUCTION

THE paradigm of cloud computing has revolutionized
how organizations and individuals store and process

data, offering unprecedented scalability and accessibility.[1]
This massive migration of data to public and private cloud
infrastructures has, however, concentrated immense volumes
of sensitive information, from corporate intellectual property
to personal health records into the hands of a few Cloud
Service Providers (CSPs). Consequently, the security of this
data has become a paramount concern.[2] Encryption stands as
the cornerstone of modern data protection strategies, rendering
data unintelligible to unauthorized parties.[3] Yet, the efficacy
of any encryption scheme is entirely contingent upon the
security and management of its cryptographic keys. If a key
is compromised, the confidentiality of the data it protects is
nullified.[4]

This dependency places an enormous burden on the Key
Management System (KMS), the entity responsible for the en-
tire lifecycle of cryptographic keys, including their generation,
storage, distribution, and revocation.[2] The dominant archi-
tecture for KMS in cloud environments is centralized, whether
managed directly by the CSP or by the customer through Bring
Your Own Key (BYOK) models.[5] This centralization, while
convenient, represents a critical architectural vulnerability. A
centralized KMS becomes a high-value target for adversaries
and a single point of failure for the entire system. A catas-
trophic event, such as a sophisticated cyberattack that exploits
complex vulnerabilities in the cloud stack [6], a malicious
insider at the CSP, or a government-compelled disclosure,
could compromise the KMS, leading to a widespread data
breach or an irreversible loss of access to mission-critical
data.[4]

This paper introduces a novel framework to dismantle this
single point of failure by fundamentally re-architecting the
trust model for cloud key management. Drawing inspiration
from the concept of ”key sharding” [7], we formalize this
intuition using the established principles of threshold cryp-
tography. The core idea is to move away from entrusting
a single entity with a complete key and instead distribute
this trust across multiple, independent parties. The security
of the system then relies not on the impenetrability of a single
fortress, but on the logistical difficulty an adversary faces in
compromising a quorum of distributed, non-colluding entities.
The fundamental problem being addressed is not merely
technological but one of trust distribution. While conventional
models necessitate absolute trust in a single CSP, our approach
minimizes this trust by requiring attacker collusion across
multiple, potentially competing, administrative domains, such
as different CSPs. This architectural shift from a centralized
to a distributed trust model is the principal innovation of our
work.

Our contribution is the Threshold Key Management
System (TKMS), a comprehensive framework designed to
securely manage symmetric encryption keys in a decentralized,
fault-tolerant, and trust-minimized manner. The key features of
TKMS are:

1) A (k, n)-threshold architecture, where a master symmet-
ric key is split into n shares, and any k of these shares
are sufficient to reconstruct the key.

2) The use of a Distributed Key Generation (DKG)
protocol, which allows the key shares to be created



2

collaboratively by the nodes without a trusted dealer,
meaning the master key is never held in its entirety by
any single entity, not even at the moment of its creation.

3) The strategic deployment of key-share-holding nodes
across heterogeneous environments (e.g., multiple CSPs
and on-premise data centers) to provide resilience
against provider-level failures and raise the bar for
attackers.

4) The integration of advanced cryptographic mechanisms,
including Verifiable Secret Sharing (VSS) and Proac-
tive Secret Sharing (PSS), to provide robustness against
malicious participants and long-term security against
persistent, mobile adversaries.

This paper is structured as follows. Section II provides a
review of the necessary background concepts, including exist-
ing cloud key management paradigms and the cryptographic
foundations of secret sharing and DKG. Section III presents
the detailed architecture and protocols of the proposed TKMS
framework. Section IV provides a rigorous security analysis of
the framework and a comparative evaluation against traditional
models. Section V outlines a plan for empirical performance
evaluation. Finally, Section VI concludes the paper and dis-
cusses promising avenues for future research.

II. BACKGROUND AND RELATED WORK

This section lays the groundwork for our proposed frame-
work by reviewing the state of the art in cloud key manage-
ment and introducing the foundational cryptographic primi-
tives upon which our system is built.

A. Paradigms in Cloud Key Management

The management of cryptographic keys is a critical service
in the cloud, and CSPs offer a spectrum of models to meet
varying customer needs for security and control [4],.[5] These
models can be broadly categorized as follows:

• CSP-Managed Keys: This is the most straightforward
model, where the CSP assumes full responsibility for
the entire key lifecycle. The customer simply enables
encryption for a given service (e.g., cloud storage), and
the CSP handles key generation, rotation, and storage
transparently. While this model offers maximum conve-
nience, it provides the customer with minimal control and
visibility, requiring absolute trust in the CSP’s security
practices and personnel.[5]

• Customer-Managed Keys (in Cloud KMS): To afford
customers greater control, CSPs offer more advanced
KMS options. A popular model is Bring Your Own
Key (BYOK), where the customer generates a key on-
premise and securely imports it into the CSP’s KMS. The
customer retains control over the key’s lifecycle policies,
such as rotation schedules and access controls. However,
while the customer manages the key’s policies, the key
material itself is still stored and used within the CSP’s
infrastructure, meaning trust is still placed in the CSP’s
implementation and operational security [4],.[5]

• Hardware Security Modules (HSMs): For the highest
level of assurance, keys can be managed within FIPS

140-2 validated HSMs. These are specialized hardware
devices designed to securely generate, store, and process
cryptographic keys, with physical and logical protections
against tampering.[5] CSPs offer HSM-backed KMS ser-
vices, where customer keys are protected by an HSM.
In some cases, customers can even provision dedicated
HSMs in the cloud. While HSMs provide a strong root
of trust, they still often exist within a single provider’s
ecosystem, representing a centralized point of failure,
albeit a highly secured one.

A common thread across all these dominant paradigms is the
reliance on a centralized point of trust or failure. Whether
it is the CSP’s software-based KMS or a dedicated HSM,
the compromise or failure of that single logical entity can
have catastrophic consequences. The TKMS framework is
explicitly designed to overcome this fundamental limitation by
distributing trust and eliminating any single point of failure.

B. Foundations of Secret Sharing

Secret sharing schemes are cryptographic protocols that
allow a secret to be divided into multiple parts, called shares,
which are distributed among a group of participants. The secret
can only be reconstructed when a sufficient number of shares
are combined [8],.[9] These schemes form the cryptographic
bedrock of our proposed system.

1) Shamir’s Secret Sharing (SSS): Proposed by Adi Shamir
in 1979, the (k, n)-threshold secret sharing scheme is a foun-
dational and elegant method for distributing a secret [10],.[11]
The intuition behind it is simple: just as two points are
needed to define a unique line, and three points to define
a unique parabola, any k points are needed to define
a unique polynomial of degree k − 1. It is based on this
mathematical principle of polynomial interpolation: a unique
polynomial of degree k−1 is defined by any k distinct points
[10],.[12] To share a secret S, a random polynomial q(x) of
degree k − 1 is constructed with the secret as the constant
term:

q(x) = ak−1x
k−1 + · · ·+ a1x+ S (mod p) (1)

The coefficients a1, . . . , ak−1 are chosen uniformly at random
from Zp. Shares are generated by evaluating q(x) at n distinct
points. To reconstruct the secret, any k shares are used to
interpolate the polynomial q(x), and the secret is recovered
as S = q(0) [12],.[13] SSS possesses *perfect secrecy*:
knowledge of any k−1 or fewer shares reveals no information
about S.[10]

2) Verifiable Secret Sharing (VSS): Shamir’s scheme as-
sumes an honest dealer. However, a malicious dealer could
intentionally distribute inconsistent shares to different par-
ticipants, making it impossible to reconstruct the correct
secret. To counter this threat, Verifiable Secret Sharing (VSS)
schemes, like Feldman’s, address this by adding a layer of
public verifiability.[15] The dealer broadcasts commitments
to the polynomial coefficients, Cj = gaj . Each participant



3

Pi receiving a share (xi, yi) can verify its consistency by
checking if the following equation holds:

gyi ≡
k−1∏
j=0

(Cj)
xj
i (mod p) (2)

This ensures that a unique, well-defined secret can be recon-
structed [15],.[16]

3) Proactive Secret Sharing (PSS): Static schemes like
SSS and VSS are vulnerable to a *mobile adversary* who
compromises participants over time. Proactive Secret Sharing
(PSS) defends against this by introducing a periodic ”share
renewal” protocol.[17] During renewal, participants collabo-
ratively update their shares without reconstructing the secret.
This is done by adding shares of a secret ’0’ to their existing
shares. This process re-randomizes the underlying polynomial
while keeping the secret the same, rendering old, compromised
shares useless for reconstruction with new shares [17],.[18]

C. Distributed Key Generation (DKG)

To create a fully decentralized system, the need for a trusted
dealer must be eliminated. Distributed Key Generation (DKG)
is a multi-party protocol that allows n participants to jointly
generate a shared secret and its shares without any single party
ever knowing the secret [19],.[20] Each participant acts as a
dealer in their own VSS scheme, and the final secret is the sum
of all individual secrets. The final share for each participant
is the sum of the shares they received from all others. This
ensures the key is ”born secret” [21],.[22]

III. PROPOSED FRAMEWORK: THRESHOLD KEY
MANAGEMENT SYSTEM (TKMS)

This section details the architecture and protocols of the
Threshold Key Management System (TKMS).

TABLE I
NOTATION SUMMARY

Symbol Description
n Total number of Key Management Nodes (KMNs).
k Threshold number of KMNs required for an operation.
Pi The i-th Key Management Node, for i ∈ {1, . . . , n}.
K The master symmetric key, shared among the KMNs.
si The share of the key K held by node Pi.

p, q, g Public parameters for the cryptographic scheme.
f(x) The master secret polynomial of degree k − 1.
Cj The public commitment to the j-th coefficient of f(x).
V K The public verification key for the master secret, V K = gK .

A. System Architecture and Threat Model

The TKMS architecture consists of three primary com-
ponents: a Client, a set of n distributed Key Management
Nodes (KMNs), and one or more untrusted Storage Providers.
The KMNs are strategically deployed across heterogeneous
environments (e.g., multiple CSPs) to maximize resilience
against provider-level failures and collusion attacks.[23] The
conceptual architecture is shown in Fig. 1.

Fig. 1. Conceptual architecture of the TKMS, showing the interaction between
the Client, distributed Key Management Nodes (KMNs) across multiple cloud
providers, and the untrusted Storage Provider.

The Threat Model assumes a powerful adversary who can
compromise up to k − 1 KMNs, eavesdrop on all network
communications, and fully compromise the storage provider.
The adversary’s goal is to recover the master key K or decrypt
ciphertext without it.

B. Protocol 1: Distributed Symmetric Key Generation and
Sharing

This one-time setup protocol uses DKG principles for the
KMNs to collaboratively generate the master key K and their
shares.

1) Initialization: All n KMNs agree on public parameters
(p, q, g).

2) Individual VSS Execution: Each KMN Pi acts as a
dealer in Feldman’s VSS [15], generating a random
polynomial fi(x), broadcasting commitments Ci,j , and
secretly sending shares sij to other nodes Pj .

3) Share Verification: Each KMN Pj verifies its received
shares sij using the broadcasted commitments. If veri-
fication fails, a complaint is broadcast.

4) Final Share and Public Key Computation: Each
qualified KMN Pi computes its final private share
si =

∑
sji. The master key K is the sum of the

constant terms of all polynomials, but is never explicitly
computed. The master public verification key V K = gK

is computed from the public commitments.

C. Protocol 2: Secure Key Reconstruction and Usage

This protocol outlines how a client uses TKMS for an
encryption or decryption operation.

1) Client Request: The client sends a signed, timestamped
request for key reconstruction to at least k KMNs.

2) Share Provision: The k contacted KMNs respond with
their private shares si.

3) Client-Side Verification and Reconstruction: The
client verifies each share using the master public com-
mitments. With k valid shares, it uses Lagrange inter-
polation to reconstruct the key K in local memory.

4) Cryptographic Operation: The client uses K with a
standard cipher like AES-256 GCM [24], [25] to encrypt
or decrypt the file.

5) Secure Erasure: Immediately after the operation, the
client securely wipes the key K and all shares si from
its memory. The security of this transient phase is also
contingent on the client application itself being hardened



4

against endpoint vulnerabilities, such as injection at-
tacks, which could otherwise compromise the key during
its brief existence in memory [26],.[27]

D. Security and Robustness Mechanisms: Integrating PSS

To ensure long-term security against a mobile adversary,
TKMS incorporates a PSS mechanism. At regular intervals,
KMNs execute a Share Renewal Protocol. Each KMN gen-
erates shares of a ”zero-polynomial” (a polynomial with a
constant term of zero) and distributes them. Each node adds the
received ”zero-shares” to its existing master key share. This re-
randomizes the shares and the underlying polynomial without
changing the master key K, thus invalidating any previously
compromised shares.[17]

IV. SECURITY ANALYSIS

A. Confidentiality and Integrity

• Key Confidentiality: Protected by the (k, n)-threshold
scheme. An adversary with fewer than k shares gains no
information about the key K.[10] DKG ensures the key is
never concentrated in one place [19], and PSS strengthens
long-term confidentiality.[17]

• Data and Share Integrity: Data integrity is provided by
the chosen cipher (e.g., AES-GCM). The integrity of the
key management process is guaranteed by VSS, as clients
can verify each share before reconstruction, preventing
the use of a corrupted or incorrect key [14],.[15]

B. Availability and Fault Tolerance

The TKMS framework is inherently fault-tolerant. The sys-
tem can withstand the failure of up to n−k KMNs and remain
operational.[28] In a multi-cloud deployment, this provides
resilience against large-scale outages affecting an entire cloud
provider, a level of business continuity that is difficult to
achieve with centralized architectures.[23]

C. Comparative Analysis

The TKMS framework is inherently fault-tolerant. In a
multi-cloud deployment, this provides resilience against large-
scale outages affecting an entire cloud provider, a level of
business continuity that is difficult to achieve with centralized
architectures.[23]

Furthermore, when compared to other systems that use
secret sharing, such as HashiCorp Vault’s Shamir seal,
TKMS offers distinct security advantages. While such
systems effectively shard a root key, they typically rely
on a trusted dealer model where the key is generated
in one place and then split. This still presents a single
point of compromise at the moment of creation. TKMS
fundamentally eliminates this risk by using a Distributed
Key Generation (DKG) protocol, where the key is ”born
secret” and never exists in its entirety on any single
machine. Additionally, the integration of Proactive Secret
Sharing (PSS) provides long-term security against persis-
tent, mobile adversaries, a feature not commonly found in
standard enterprise secret management tools.

Table II compares TKMS with traditional key management
architectures, highlighting its superior trust model and fault
tolerance at the cost of increased implementation complexity.

V. PROJECTED PERFORMANCE EVALUATION

This section outlines a plan for assessing the performance
of the TKMS framework.

A. Experimental Setup

KMNs would be deployed as virtual machines (e.g.,
‘t2.micro‘ instances on AWS, ‘B1s‘ on Azure, and ‘e2-
micro‘ on GCP) across multiple distinct CSPs to simulate a
realistic geo-distributed environment. The protocols would be
implemented in Go, utilizing its native concurrency features
and cryptographic libraries such as ‘crypto/elliptic‘ for the
underlying group operations. The cryptographic scheme
would be instantiated over a standard elliptic curve group
like ‘P-256‘ for the public parameters (p, q, g) to ensure
both security and performance. Experiments would vary
system parameters n (total nodes) and k (threshold), as well
as the size of the data being processed.

B. Performance Metrics

1) DKG Latency: Wall-clock time to complete the initial
key generation protocol.

2) Reconstruction Latency: Wall-clock time from client
request to successful key reconstruction in memory. This
is the most critical user-facing metric.

3) Encryption/Decryption Throughput: Rate (in MB/s)
at which a file is processed, including reconstruction
latency.

C. Expected Outcomes and Discussion

We project that DKG latency will scale polynomially with
n, while reconstruction latency will be dominated by network
RTT and scale linearly with k. Throughput for small files will
be impacted by the reconstruction overhead, but for large files,
this fixed cost will be amortized, and throughput will approach
the native speed of the underlying symmetric cipher. These
projected outcomes are illustrated in Fig. 2, Fig. 3, and Fig.
4.

VI. CONCLUSION AND FUTURE WORK

This paper introduced the Threshold Key Management
System (TKMS), a novel framework that leverages threshold
cryptography to create a decentralized, fault-tolerant, and trust-
minimized environment for managing symmetric encryption
keys. By integrating DKG, VSS, and PSS, TKMS provides a
complete, end-to-end secure lifecycle for a shared key, offering
robust protection against insider threats and provider-level
failures.

The primary limitation of TKMS is its increased operational
complexity compared to turnkey KMS solutions. This com-
plexity manifests in several areas. First, the framework’s
performance, particularly during the interactive DKG and
reconstruction phases, is sensitive to network latency and



5

TABLE II
COMPARATIVE ANALYSIS OF KEY MANAGEMENT ARCHITECTURES

Feature CSP-Managed KMS BYOK with Cloud HSM Proposed TKMS ((k, n)-threshold)
Trust Model Single CSP is fully trusted. Trust in CSP for HSM infra,

customer for key.
Trust distributed across k of n parties.

Fault Tolerance Reliant on single CSP’s SLA. Reliant on single CSP’s SLA
for HSM service.

Tolerates up to n−k node/provider failures.

Insider Threat (CSP) High risk. A mali-
cious/compelled CSP has
access.

Lower risk, but CSP controls
HSM environment.

Very high resistance. Requires collusion
across providers.

Key Compromise Impact Total loss of all keys managed
by the service.

Total loss of imported keys if
HSM is broken.

No key loss if < k shares are compromised.

Implementation Complex-
ity

Low (fully managed service). Medium (requires key genera-
tion and import).

High (requires deploying and managing
KMNs).

Operational Flexibility Limited to CSP’s offerings. Moderate, customer controls
key lifecycle.

High, fully customizable policies.

Fig. 2. Projected DKG Latency as a function of the number of KMNs (n).

Fig. 3. Projected Reconstruction Latency as a function of the threshold (k)
for a fixed n.

stability; geo-distributed KMNs may experience delays
that impact user-facing operations. Second, while resilient
to node failure, the framework currently lacks a defined

Fig. 4. Projected Encryption/Decryption Throughput as a function of file size,
showing the amortization of reconstruction overhead.

protocol for catastrophic key recovery (e.g., if a client
permanently loses credentials or more than n−k nodes are
destroyed), which is a critical operational consideration. Fi-
nally, integrating TKMS into existing applications requires
a client-side SDK or proxy layer to translate calls from
standard cloud KMS APIs, posing an adoption hurdle.

Future work should focus on addressing these prac-
tical challenges. Automating the deployment, monitor-
ing, and lifecycle management of KMNs using modern
infrastructure-as-code tools would significantly lower the
operational barrier. For future research, a compelling
direction is to design and evaluate adaptive share renewal
policies for PSS, where the frequency of updates is based
on threat intelligence or node behavior. Another critical
avenue is to extend the framework to support threshold
asymmetric cryptography.[29] Protocols for threshold digital
signatures, such as Threshold ECDSA, allow the signing
operation itself to be a distributed protocol without ever
reconstructing the private key [30],.[31] This would elimi-
nate the transient reconstruction of the key on the client,
representing the gold standard for distributed trust systems.



6

Such advancements are critical for enabling a wider range of
high-security applications, especially as modern systems in-
creasingly integrate complex components like Large Language
Model (LLM) agents, which introduce novel attack surfaces
and security challenges.[32]

REFERENCES

[1] I. Foster, Y. Zhao, I. Raicu, and S. Lu, ”Cloud Computing and Grid
Computing 360-Degree Compared,” in Grid Computing Environments
(GCE) Workshop, 2008, pp. 1-10.

[2] M. Armbrust et al., ”A View of Cloud Computing,” Communications of
the ACM, vol. 53, no. 4, pp. 50-58, Apr. 2010.

[3] W. Stallings, Cryptography and Network Security: Principles and Prac-
tice, 7th ed. Pearson, 2017.

[4] A. Buchade and R. Ingle, ”Key Management for Cloud Data Storage:
Methods and Comparisons,” in International Conference on Electronic
Systems, Signal Processing and Computing Technologies, 2014.

[5] National Security Agency & Cybersecurity and Infrastructure Secu-
rity Agency, ”Use Secure Cloud Key Management Practices,” CSI-
CloudTop10-Key-Management, Mar. 2024.

[6] A. Boldyreva, V. Goyal, and V. Kumar, ”Identity-based encryption with
outsourced revocation in cloud computing,” in Proc. ACM Conf. Comput.
Commun. Secur., 2011, pp. 361-370.

[7] G. R. Blakley, ”Safeguarding cryptographic keys,” in Proc. AFIPS
National Computer Conference, vol. 48, 1979, pp. 313-317.

[8] C. A. Asmuth and J. Bloom, ”A modular approach to key safeguarding,”
IEEE Transactions on Information Theory, vol. 29, no. 2, pp. 208-210,
Mar. 1983.

[9] A. Shamir, ”How to share a secret,” Communications of the ACM, vol.
22, no. 11, pp. 612-613, Nov. 1979.

[10] D. E. Knuth, The Art of Computer Programming, Vol. 2: Seminumerical
Algorithms, 3rd ed. Addison-Wesley, 1997.

[11] C. L. Liu, Introduction to Combinatorial Mathematics. McGraw-Hill,
1968.

[12] T. H. Cormen, C. E. Leiserson, R. L. Rivest, and C. Stein, Introduction
to Algorithms, 3rd ed. MIT Press, 2009.

[13] B. Chor, S. Goldwasser, S. Micali, and B. Awerbuch, ”Verifiable secret
sharing and achieving simultaneity in the presence of faults,” in Proc.
26th IEEE Symp. Found. Comput. Sci., 1985, pp. 383-395.

[14] P. Feldman, ”A practical scheme for non-interactive verifiable secret
sharing,” in Proc. 28th IEEE Symp. Found. Comput. Sci., 1987, pp.
427-437.

[15] T. Rabin and M. Ben-Or, ”Verifiable secret sharing and multiparty
protocols with honest majority,” in Proc. 21st ACM Symp. Theory
Comput., 1989, pp. 73-85.

[16] R. Ostrovsky and M. Yung, ”How to withstand mobile virus attacks,”
in Proc. 10th ACM Symp. Princ. Distrib. Comput., 1991, pp. 51-59.

[17] A. Herzberg, S. Jarecki, H. Krawczyk, and M. Yung, ”Proactive secret
sharing or: How to cope with perpetual leakage,” in Advances in
Cryptology—CRYPTO ’95, 1995, pp. 339-352.

[18] T. Pedersen, ”A threshold cryptosystem without a trusted party,” in
Advances in Cryptology—EUROCRYPT ’91, 1991, pp. 522-526.

[19] R. Gennaro, S. Jarecki, H. Krawczyk, and T. Rabin, ”Secure distributed
key generation for discrete-log based cryptosystems,” in Advances in
Cryptology—EUROCRYPT ’99, 1999, pp. 295-310.

[20] I. Goldberg, D. Wagner, and E. Brewer, ”A secure environment for
untrusted helper applications,” in Proc. 6th USENIX Security Symp.,
1996.

[21] A. Kate and I. Goldberg, ”Distributed key generation for the internet,” in
Proc. 14th Int. Conf. Financial Cryptography and Data Security, 2010,
pp. 331-346.

[22] K. Bowers, A. Juels, and A. Oprea, ”HAIL: A high-availability and
integrity layer for cloud storage,” in Proc. ACM Conf. Comput. Commun.
Secur., 2009, pp. 187-198.

[23] M. Dworkin, ”Recommendation for Block Cipher Modes of Operation:
Galois/Counter Mode (GCM) and GMAC,” NIST Special Publication
800-38D, Nov. 2007.

[24] National Institute of Standards and Technology, ”Advanced Encryption
Standard (AES),” FIPS PUB 197, Nov. 2001.

[25] Y. Desmedt and Y. Frankel, ”Threshold cryptosystems,” in Advances in
Cryptology—CRYPTO ’89, 1990, pp. 307-315.

[26] Y. Desmedt, ”Threshold cryptography,” European Transactions on
Telecommunications, vol. 5, no. 4, pp. 449-457, 1994.

[27] R. Gennaro and S. Goldfeder, ”Fast multiparty threshold ECDSA with
fast trustless setup,” in Proc. ACM Conf. Comput. Commun. Secur., 2018,
pp. 1179-1194.

[28] V. Shoup, ”Practical threshold signatures,” in Advances in Cryptol-
ogy—EUROCRYPT 2000, 2000, pp. 207-220.

[29] D. Pant, ”Server-Side Request Forgery on LaTeX Editor Leading to
Docker Bypass and Total Server Compromise,” Zenodo, 2022. [Online].
Available: https://doi.org/10.5281/zenodo.16301382

[30] D. Pant, ”Independent Security Research Vulnerability Disclosure Re-
port: CVE-2017-16568,” Zenodo, 2017. [Online]. Available: https://doi.
org/10.5281/zenodo.15111221

[31] D. Pant, ”Independent Security Research Vulnerability Disclosure Re-
port: CVE-2017-16567,” Zenodo, 2017. [Online]. Available: https://doi.
org/10.5281/zenodo.15111380

[32] A. Joshi, D. Pant, and I. Kumar, ”DILLMA: Damn Insecure LLM
Agent (1.0.0),” Zenodo, 2025. [Online]. Available: https://doi.org/10.
5281/zenodo.15232655


