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Abstract—The rapid enterprise adoption of multi-cloud, mi-
croservice architectures introduces unprecedented complexity
and security challenges. Traditional, reactive security models are
proving inadequate, as code changes can propagate to global
production systems within minutes, leaving minimal time for
after-the-fact audits. Existing security solutions often operate in
silos, failing to provide a coordinated and autonomous defense
posture capable of addressing threats that span heterogeneous
cloud environments. This paper introduces a novel framework
for autonomous, cross-cloud threat mitigation that utilizes Mullti-
Agent Reinforcement Learning (MARL). In our proposed sys-
tem, lightweight, self-defending artificial intelligence agents are
deployed within each cloud environment to act as intelligent
sentinels inside the software-delivery pipeline. These agents learn
collaboratively to identify and remediate security risks in real-
time, functioning as self-healing remediation agents. Through
simulated multi-cloud failure scenarios, we demonstrate that this
approach can significantly reduce mean-time-to-resolution for
security incidents, projecting improvements comparable to the
60% reduction in vulnerability patch time observed in related
empirical studies.

Index Terms—Autonomous Systems, Cloud-Native Security,
Cybersecurity, MARL, Multi-Agent Reinforcement Learning,
Multi-Cloud Security.

I. INTRODUCTION

HE modern enterprise information technology landscape

is undergoing a profound architectural transformation,
characterized by the widespread adoption of multi-cloud
strategies and microservice-based application designs. Recent
industry analyses indicate that this paradigm is now the norm,
with over 92% of large enterprises operating in a multi-cloud
environment and 79% actively planning or executing multi-
cloud deployments [1]. This trend is fueling unprecedented
growth, with global spending on cloud services projected to
reach $1.3 trillion by 2025 [1].

A. The Rise of Multi-Cloud Complexity

The business drivers for this architectural evolution are clear
and strategic. A multi-cloud approach allows organizations
to avoid vendor lock-in, providing the flexibility to select
best-of-breed services from different providers. Furthermore,
distributing workloads across multiple clouds enhances re-
silience, enabling sophisticated disaster recovery and business
continuity strategies that are unattainable within a single-
provider ecosystem [2].
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However, these strategic advantages come at the cost of
immense operational and security complexity. The distribution
of assets across heterogeneous environments leads to frag-
mented visibility, inconsistent security policy enforcement, and
a dramatically expanded and porous attack surface [3]. Each
cloud provider has its own unique set of tools, Application
Programming Interfaces (APIs), and Identity and Access Man-
agement (IAM) systems, creating operational silos that are
difficult to manage and secure cohesively.

This complexity is compounded by a fundamental velocity
mismatch between modern software development lifecycles
and traditional security operations. Architectures based on
microservices and Continuous Integration/Continuous Deploy-
ment (CI/CD) pipelines are engineered for speed, enabling
development teams to deploy code changes to global produc-
tion environments in a matter of minutes [4]. Recent advances
in Al-driven DevOps automation have further accelerated
these deployment cycles, creating even greater challenges for
traditional security approaches [15]. In stark contrast, con-
ventional security models, which rely on manual alert triage
from Security Information and Event Management (SIEM)
systems and the execution of predefined playbooks, operate
on a timescale of hours, if not days.

B. The Inadequacy of Traditional Security Models

Legacy security paradigms, conceived for the era of static,
on-premises data centers, are ill-equipped to address the
challenges of dynamic, distributed, multi-cloud ecosystems.
The foundational concept of perimeter-based security is fun-
damentally irrelevant in a world where the network perimeter
has dissolved [5]. With data and workloads distributed across
multiple cloud providers, and users accessing resources from
anywhere, the notion of a trusted internal network and an
untrusted external one has vanished.

Security Orchestration, Automation, and Response (SOAR)
platforms represent an attempt to address this fragmentation
by centralizing alerts and automating response workflows [6].
While SOAR can reduce manual effort for well-understood
threats, its core logic is based on predefined, rigid playbooks
[7]. This deterministic approach is inherently brittle. Modern
adversaries are dynamic and adaptive; they continually evolve
their tactics, techniques, and procedures to circumvent static
defenses and exploit the predictable logic of automated sys-
tems.



C. Proposed Solution and Contributions

This paper introduces a novel framework for autonomous,
cross-cloud threat mitigation that leverages MARL. The core
of our framework is the deployment of lightweight, collabo-
rative Al agents, termed Sentinels, within each distinct cloud
environment. These agents act as an intelligent, decentralized
defense fabric, embedded directly within the software delivery
pipeline to proactively and autonomously identify, coordinate,
and remediate security risks in real-time.

The main contributions of this work are threefold:

1) Framework Design: A novel, decentralized architecture
employing collaborative Al agents as sentinels within
the software delivery pipeline, providing self-defending
and self-healing capabilities across heterogeneous cloud
platforms.

2) MARL Application: The cross-cloud security problem
is formulated as a cooperative multi-agent task, for
which a specialized MARL model is developed with a
tailored state-action-reward structure.

3) Performance Evaluation: Through high-fidelity simu-
lation of complex, multi-stage threat scenarios, the effec-
tiveness of the MARL-based framework is demonstrated
with significant reduction in Mean-Time-To-Resolution
(MTTR) for security incidents.

II. RELATED WORK

This section situates the proposed framework within the
existing body of research by examining three key areas: cloud
security automation, the application of artificial intelligence in
cybersecurity, and the use of multi-agent systems in distributed
environments.

A. Cloud Security Automation and Orchestration

SOAR platforms have emerged as a primary solution for
managing the complexity of modern Security Operations Cen-
ters (SOCs). These platforms function by integrating a wide
array of security tools and automating incident response work-
flows through the use of playbooks [8]. Despite their utility,
SOAR platforms exhibit fundamental limitations that curtail
their effectiveness in dynamic, multi-cloud environments.

The most significant limitation is their deep-seated re-
liance on static, predefined playbooks [7]. These playbooks
are essentially rigid scripts that encode human knowledge
for specific, anticipated threat scenarios. This makes them
inherently ineffective against novel threats, such as zero-day
exploits, polymorphic malware, or sophisticated, multi-stage
attacks that do not conform to any existing script.

B. Al and Machine Learning in Cybersecurity

The application of artificial intelligence and machine learn-
ing has introduced more adaptive capabilities to cybersecurity.
Single-agent Reinforcement Learning (RL) has demonstrated
significant success in solving discrete, well-defined security
problems [9].

For instance, in the domain of intrusion detection, RL
agents, frequently based on Deep Q-Networks (DQN), have
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Fig. 1. Simplified system architecture showing Sentinel agents deployed
across multi-cloud environments with secure communication and centralized
MARL training.

been trained to analyze network traffic and classify connec-
tions as either benign or malicious with high accuracy [10].
While these applications are powerful, they are predominantly
characterized by a single-agent perspective, operating within
an isolated context.

C. Multi-Agent Systems in Distributed Environments

Multi-Agent Systems (MAS) are a well-established
paradigm for designing and controlling complex, distributed
systems. The core principle of MAS is the use of multiple
autonomous agents that interact with each other and their
environment to solve problems that are beyond the capabilities
of any single agent [11].

Despite the proven efficacy of MAS for distributed co-
ordination, a significant research gap exists in its applica-
tion to autonomous security remediation within multi-cloud
contexts. The framework proposed in this paper represents a
convergence of these technological paradigms, moving beyond
simple automation to achieve true autonomy.

III. FRAMEWORK ARCHITECTURE AND DESIGN

This section provides a detailed technical specification of
the proposed framework, delineating its high-level architec-
ture, the design of the individual Sentinel agents, and the
mathematical formulation of the MARL model.

A. High-Level System Overview

The framework is architected as a decentralized collective
of lightweight, autonomous Sentinel agents. These agents are
strategically deployed across an organization’s multi-cloud
footprint, with one or more agents instantiated per distinct
security domain. A key design principle is the deep integration
of these agents within the software delivery pipeline.

Fig. 1 illustrates the high-level system architecture, showing
three distinct cloud environments (AWS, Azure, GCP), each
hosting a set of microservices and a dedicated Sentinel agent.
The agents communicate through a secure message bus and
receive policy updates from the centralized MARL training
environment.



B. The Sentinel Remediation Agent

Each individual Sentinel agent is an independent decision-
making entity implemented as a deep neural network. The
specific architecture is an Actor-Critic model, which is well-
suited for the chosen MARL algorithm. The network itself is a
hybrid design, employing a Multi-Layer Perceptron (MLP) to
process structured inputs and a Convolutional Neural Network
(CNN) for feature extraction from semi-structured data.

The agent’s perception of its environment is formed through
its input vector, which constitutes its local state observation.
This vector is constructed from five primary data sources, each
requiring specific collection and processing mechanisms:

e Cloud Configuration State: Key-value pairs represent-
ing the status of critical resources, collected via cloud
provider APIs (AWS Config, Azure Resource Graph,
GCP Asset Inventory). The data is normalized into a stan-
dardized schema with 150 dimensional features covering
IAM policies, security group rules, encryption settings,
and resource configurations. Binary encoding is used for
categorical features, while continuous metrics are min-
max normalized to [0,1].

o Vulnerability Intelligence: Data ingested from container
image scanners (Trivy, Clair, Snyk) and dependency
checkers integrated into CI/CD pipelines. CVE identifiers
are embedded using a pre-trained vulnerability vector
space, CVSS scores are normalized, and exploit avail-
ability flags are encoded as binary features, resulting in a
64-dimensional vulnerability representation per detected
issue.

o Real-time Threat Alerts: Signals from native cloud
threat detection services (AWS GuardDuty, Azure Secu-
rity Center, GCP Security Command Center) and third-
party tools (Falco, Sysdig). Alert severity levels are
mapped to numerical scales, threat categories are one-hot
encoded, and temporal features capture alert frequency
patterns over sliding windows.

« Behavioral Telemetry: Network flow logs are processed
using statistical aggregation (mean, variance, percentiles)
over 5-minute windows. API call histories from Cloud-
Trail/Activity Logs are encoded using frequency analysis
and anomaly scores computed via isolation forests. The
resulting telemetry vector comprises 32 dimensional fea-
tures capturing traffic patterns and access behaviors.

o Peer State Information: A condensed representation
(16 dimensions) of critical state indicators received from
other Sentinel agents via the secure message bus, includ-
ing threat confidence scores, active remediation flags, and
resource utilization metrics.

The complete input vector concatenates these components
into a 278-dimensional state representation, processed through
a feature normalization layer before feeding into the agent’s
neural network.

C. The Multi-Agent Reinforcement Learning Model

To formally ground the learning problem, the challenge
of coordinated, cross-cloud security is modeled as a De-
centralized Partially Observable Markov Decision Process

(Dec-POMDP). A Dec-POMDP is defined by the tuple
(1,5,{A;},T,R,{}, O, h), where:

« State Space (5): The global state s € S represents the
comprehensive security posture of the entire multi-cloud
infrastructure. Agents perceive local observations o; €
Q;, which are noisy and incomplete reflections of the
global state.

o Action Space (A): The action space for each agent, A;,
is a discrete set of atomic remediation actions including:

patch_container_image(image_id, cve_id), (1
update_firewall_rule(rule_id, new_config), 2)
revoke_iam_permission(user_id, permission), (3)
isolate_kubernetes_pod(pod_name). )

o Reward Function (R): A global reward signal R(s,a)
shared among all agents, designed to balance competing

objectives of speed, accuracy, and operational stability.
The reward function is formulated as:

R(37 a) = Rsecurity(37 CL) + Refﬁciency (Sa a)

- Pdisruption(sv (Z) - Rime (t) (5)
where each component addresses a specific learning ob-
jective:

- Rsecurity(s7a) = « - chreat_mitigated : SeVerity_SCOre

provides large positive rewards (o« = 100) propor-
tional to the CVSS severity of successfully mitigated

threats.

- Refﬁciency(sva) = ﬂ Hproactive_action (1 -
utilization_cost) rewards proactive hardening
actions (8 = 10) while considering resource
utilization.

= Piisruption(s,a) = - (service_downtime + A -

I[false_posiﬁve) penalizes operational disruptions (y =
50) with additional penalties for false positives (A =
5).
— Pime(t) = d - t applies a small time penalty (6 = 1)

to encourage rapid response.

This multi-objective formulation enables agents to learn

policies that effectively balance threat response speed

with operational stability.

The chosen MARL algorithm for this framework is QMIX
(Monotonic Value Function Factorisation) [12]. QMIX adheres
to the Centralized Training with Decentralized Execution
paradigm. During training, a centralized mixing network has
access to global state information to learn an accurate joint
action-value function. During execution, agents operate in a
fully decentralized manner.

Fig. 2 illustrates the QMIX algorithm workflow, showing
how individual agent Q-values are combined through the
mixing network to produce the total Q-value while maintaining
the monotonicity constraint. This ensures that local greedy
action selection by individual agents remains consistent with
global optimality.

Table I provides a comparative analysis of MARL algo-
rithms, demonstrating why QMIX is optimal for our coopera-
tive, discrete-action, shared-reward problem.
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Fig. 2. QMIX algorithm workflow showing centralized training with de-
centralized execution. Individual agent Q-values (); are combined through
a mixing network to produce the total Q-value Qo+ while maintaining
monotonicity.

TABLE I
COMPARATIVE ANALYSIS OF MARL ALGORITHMS

Feature VDN QMIX MADDPG
Paradigm Value-Based Value-Based Actor-Critic
Action Space Discrete Discrete Continuous
Value Linear Sum Non-linear Centralized
Factorization Monotonic Critic
Expressiveness Low High High
Suitability Good Optimal Less suitable
baseline

D. Cross-Cloud Communication Protocol

Effective collaboration requires a robust and efficient com-
munication protocol. The Sentinel agents communicate over
a secure, lightweight message bus using a publish-subscribe
model. The protocol consists of two primary message types:

1) State Broadcasts: At regular intervals, each agent
broadcasts a condensed version of its local state vector,
including key security indicators and active high-priority
alerts.

2) Coordinated Action Proposals: When an agent con-
templates a high-impact remediation action, it initiates
a two-phase commit-style protocol to ensure consensus
before execution.

IV. EXPERIMENTAL SETUP AND EVALUATION

This section details the methodology for the empirical
validation of the proposed framework through a high-fidelity
simulation environment and rigorous performance evaluation.

A. Simulation Environment

The multi-cloud environment was simulated using a
Kubernetes-based platform. A single, large-scale Kubernetes
cluster managed by Rancher was employed to orchestrate the
entire simulation [13]. Three distinct Kubernetes namespaces
were created to emulate AWS, Azure, and Google Cloud
Platform (GCP) environments.

A representative multi-tier e-commerce application was
decomposed into microservices and strategically deployed

across these three namespaces to establish realistic cross-cloud
dependencies. The Sentinel agents were deployed as sidecar
containers within the application pods.

B. Threat Scenarios

The threat scenarios for evaluation were systematically de-
signed using the STRIDE threat modeling framework (Spoof-
ing, Tampering, Repudiation, Information Disclosure, Denial
of Service, Elevation of Privilege) [14]. Three scenarios were
developed:

1) Propagating Vulnerability: A critical Remote Code
Execution (RCE) vulnerability is introduced through
the CI/CD pipeline and deployed to multiple cloud
environments.

2) Cross-Cloud Misconfiguration: An overly permissive
IAM role in one cloud enables access to sensitive data
in another cloud through a misconfigured firewall rule.

3) Coordinated Denial-of-Service: A distributed attack
targets API endpoints across all three cloud environ-
ments simultaneously.

C. Baseline Models

The performance of the MARL framework was compared
against five baseline models representing different paradigms
of security automation:

1) No Automation (Manual): Simulates traditional
human-driven response with industry-average incident
response times (30-60 minutes for detection and triage).

2) Rule-Based Automation (SOAR): Simulates a tra-
ditional SOAR system with predefined playbooks for
known threat scenarios.

3) Siloed Single-Agent RL: Independent Q-learning
agents deployed in each cloud environment without
communication capabilities.

4) Centralized Deep RL: A single deep reinforcement
learning agent with global visibility across all cloud
environments, representing recent academic approaches
to cloud security automation [9].

5) Federated Learning Security (FedSec): A federated
learning approach where individual cloud models are
trained locally and aggregated centrally, based on recent
distributed security research [10].

D. Performance Metrics

The evaluation used the following metrics:

¢ Mean-Time-To-Resolution (MTTR): Primary metric
measuring average time from threat detection to complete
mitigation.

« Remediation Accuracy: Percentage of threats correctly
identified and fully mitigated.

o False Positive Rate: Number of incorrect remediation
actions taken.

o System Overhead: Computational resources consumed
by the agents.



Fig. 3. Mean-Time-To-Resolution comparison across threat scenarios showing
superior performance of the MARL framework.

V. RESULTS AND ANALYSIS

This section presents the quantitative results from the sim-
ulated experiments, providing a comparative analysis of the
proposed MARL framework against the baseline models.

A. Performance on Threat Scenarios

Fig. 3 shows the MTTR comparison across all threat scenar-
ios. The MARL framework consistently achieved the lowest
MTTR across all scenarios.

In the Propagating Vulnerability scenario, the Manual ap-
proach required over 180 minutes, while the MARL frame-
work achieved resolution in just 3 minutes through parallel
processing and coordinated action. The Centralized Deep
RL model achieved competitive performance (5 minutes)
but suffered from scalability limitations and single-point-
of-failure concerns. The FedSec approach showed moderate
improvement (8 minutes) but faced challenges with model
synchronization delays across cloud boundaries.

In the Cross-Cloud Misconfiguration scenario, the perfor-
mance gap was most pronounced. The Rule-Based model
failed entirely, lacking a specific playbook to correlate threats
across cloud boundaries. Both the Siloed Single-Agent RL
and FedSec models failed completely, as they lacked real-time
cross-cloud visibility and coordination capabilities. The Cen-
tralized Deep RL model succeeded but required 12 minutes
due to the complexity of processing global state information.
The MARL framework was the most effective automated sys-
tem, resolving the issue in under 2 minutes through distributed
inter-agent collaboration.

The Remediation Accuracy of the MARL framework was
100% across all tests, while the Single-Agent RL model had
0% accuracy on the cross-cloud scenario. The False Positive
Rate for all RL-based models was negligible (< 0.1%) after
the initial training phase.

B. Scalability and Latency Analysis

The framework’s performance was evaluated under increas-
ing complexity, scaling from 10 to 500 microservices. The
agent’s decision latency remained consistently low, averaging
under 250 milliseconds even with 500 agents, supporting the
claim of sub-second latency. This demonstrates the superior
scalability of the decentralized autonomous approach com-
pared to centralized human control.

C. Efficacy of Collaboration

The Cross-Cloud Misconfiguration scenario provides defini-
tive demonstration of the necessity of multi-agent collabora-
tion. The Siloed Single-Agent RL model’s failure highlights a
fundamental architectural limitation: autonomous agents can-
not defend against threats they cannot perceive. The success of

the MARL framework is directly attributable to the inter-agent
communication protocol and collaborative learning process.

VI. DISCUSSION

The results demonstrate the superiority of a collaborative,
learning-based approach to multi-cloud security. The MARL
framework’s ability to adapt and learn from its environment
allowed it to outperform static, brittle rule-based models.

A. Interpretation of Findings

The most significant finding is the demonstrated necessity
of collaboration. The failure of siloed agents in cross-cloud
scenarios proves that even advanced Al, when constrained
by environmental boundaries, is insufficient for securing in-
terconnected systems. The MARL agents’ learned ability to
communicate and coordinate transforms isolated intelligent
entities into a cohesive, intelligent collective.

The comparison with state-of-the-art academic approaches
reveals the unique advantages of our decentralized MARL
framework. While the Centralized Deep RL model achieved
competitive performance in simple scenarios, it exhibited
fundamental limitations in scalability and fault tolerance that
make it unsuitable for enterprise-scale multi-cloud deploy-
ments. The FedSec approach, despite its distributed nature,
struggled with the synchronization requirements and temporal
constraints of real-time threat response. Our MARL frame-
work’s superior performance stems from its ability to maintain
both local autonomy and global coordination without the
bottlenecks inherent in centralized or federated approaches.

B. Limitations and Future Work

This study was conducted in a simulated environment,
which cannot capture the full complexity of real-world pro-
duction systems. Additionally, while our framework addresses
external threats, it does not explicitly consider adversarial
attacks against the MARL agents themselves. Future work will
focus on:

o Explainable AI: Developing methods to make agents’
decision-making processes transparent.

o Human-in-the-Loop: Integrating supervised autonomy
with human approval for high-impact actions.

o Live Environment Testing: Testing the framework in
controlled, live cloud environments.

o Transfer Learning: Enabling agents to quickly adapt to
new cloud services and threat types.

¢ Adversarial Robustness: Developing defenses against
potential attacks on the MARL framework itself, in-
cluding model poisoning during training, reward hack-
ing through malicious feedback injection, and Byzantine
behavior where compromised agents provide false state
information to peers. Techniques such as robust aggrega-
tion methods, adversarial training, and agent authenticity
verification mechanisms will be essential for production
deployment.



C. Broader Impact

By enabling a proactive and autonomous defense pos-
ture, this framework contributes to the development of a
more defensible, resilient digital ecosystem. The principles
demonstrated can be extended to protect critical infrastructure,
Internet of Things networks, and national digital services.

VII. CONCLUSION

The accelerating enterprise migration to multi-cloud,
microservice-based architectures has created a security land-
scape of unprecedented complexity and velocity. This paper
introduced a novel framework for autonomous, cross-cloud
threat mitigation based on MARL.

Our simulation-based evaluation demonstrated the profound
efficacy of this approach. In complex, multi-stage threat
scenarios, the MARL framework significantly outperformed
traditional manual, rule-based, and siloed AI models, achiev-
ing dramatic reduction in mean-time-to-resolution. The re-
sults critically underscored that for interconnected systems,
intelligent collaboration is not merely an enhancement but a
necessity for effective defense.

The research presented here represents a step towards a new
generation of self-defending, self-healing digital infrastructure.
As cyber threats continue to grow in speed and sophistication,
the future of cybersecurity will inevitably lie in autonomous
systems that can perceive, learn, and act at a pace and scale
that surpasses human capability.
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