Database-Ievel End User Authorization (DB-EUA)

Saurav Bhattacharya, Gaurav Deshmukh, Ankush Rastogi, Dewank Pant, Durga
Krishnamoorthy, Manan Wason, Madhavi Najana, Uttam Kumar

Abstract Application servers are traditionally the policy enforcement point for databases. In that model, the database cannot
verify the end user’s identity or intent for each operation; it can only trust whatever context the application supplies. This creates
systemic exposure to server compromise, confused-deputy problems, and weak provenance. DB-EUA moves verifiable
authorization into the data path: every create/read/update/delete (CRUD) is accompanied by a user-authenticated,
cryptographically verifiable token that the database (or a hardened database proxy) validates and binds to the session executing
the SQL. The result is a tamper-evident, user-attributable audit trail and strong least-privilege enforcement at the DB layer—
aligned with Zero Trust principles and regulatory accountability requirements. We present: A precise threat model and trust
assumptions. A two-token architecture (server channel token + per-user operation token). A reference implementation blueprint
for PostgreSQL Row-Level Security (RLS) with a wire-protocol proxy. Hardening guidance (key management, mTLS, channel
binding, log hygiene). Compliance mappings (HIPAA, SOX, GDPR, CCPA) and a summary matrix. A practical vendor roadmap
(DB engines, cloud DBs, gateway/proxy vendors, backend platforms).

Index Terms— Zero Trust; Row-Level Security (RLS); Cryptographically Verifiable Authorization; Verifiable Credentials (VC);

1. INTRODUCTION

Most stacks authenticate users at the edge

(OIDC/OAuth 2.0) and authorize requests in the application
tier. The app then connects to the database with a pooled
application identity (single database user/role) and performs
CRUD “on behalf of” the end user. The database has no
independent proof of the end user’s identity or intended
scope for each operation [1]. When the application is
compromised (RCE, key theft, RBAC misconfig), it can
impersonate users and write arbitrary data while the DB can
only see “the app” [7][8][9].

Zero Trust’s core message—continuously verify, least
privilege, assume breach—applies at the data layer as much
as at the network perimeter [13]. Provenance and
accountability regulations (HIPAA, SOX) and data subject
rights (GDPR/CCPA) increasingly require per-operation
auditability and demonstrable consent/authority, which is
infeasible if the DB never receives authenticated user
context tied to the specific SQL statement [14][15][16][17].

To overcome these challenges we present the DB-EUA
model. We validate that the DB-EUA model: Accurately
verifies end-user identity and intent at the database layer,
provides tamper-evident and user-attributable audit trails,
enforces least-privilege and Zero Trust principles, resists
confused-deputy attacks and application server
compromises.

' The manuscript was submitted for review on 8/25/2025. It was
supported by The New World Foundation. All authors are affiliated to The
New World Foundation.

II. RELATED WORK

e OAuth 2.0 / OIDC. Excellent at user auth and
delegation at the application boundary, but do not
propagate signed per-operation claims to the
database [1].

e PostgreSQL RLS. Expressive row-level policies
driven by session variables; relies on the app to set
truthful context [4].

e DIDs / Verifiable Credentials (VCs). Portable,
cryptographic identity and attestations suitable for
capability delegation; not commonly enforced at
the SQL boundary today [2][3].

e UCAN / ZCAP-LD. User-controlled, delegable
capabilities; promising for least-privilege chaining
to resources (tables/rows) [5][6].

* Cloud DB IAM integrations. Azure SQL + AAD,
AWS IAM DB Auth, GCP IAM for Cloud SQL
improve who can connect, not who may change
this row now [7][8][9].

III. THREAT MODEL

Goals. Prevent the application server (or an attacker
within it) from executing arbitrary CRUD that appears as
legitimate user actions; make all writes verifiably
attributable to a specific user and scope.

Out of scope. Insider with DB superuser privileges;
physical attacks on the DB host; cryptographic primitive
failures (e.g., if JOSE/JWT are broken) [18][19].

Adversaries.

e Compromised app server: RCE/malware issuing
SQL with forged user context.

e Token thief: Attempts replay of an intercepted
token.

e Curious operator: Observes SQL logs to exfiltrate

user tokens/claims.
e Confused deputy: Microservice A misuses
capabilities delegated to B.

Assumptions.

* User tokens are signed by the user’s key or by a
capability issuer under the user’s control (e.g.,
VC/UCAN), and validated independently by the
proxy/DB using a trusted key distribution (JWKS)
[3I[5][18][20][21].

* The proxy/DB has authenticated transport to
clients/servers (mTLS) and maintains secure key
material (HSM/KMS) [13].

IV. ARCHITECTURE: TWO TOKEN, VERIFIABLE CRUD

4.1 Token types

* Server Channel Token (SCT): Long-lived
credential binding the proxy to the DB (e.g., mTLS
client cert + DB role).

e User Operation Token (UOT): Short-lived, scoped
token accompanying each CRUD (or batch) with
claims describing who, what, where, until when
[18][19].

UOT minimal claims (JWT/VC/UCAN):

sub subject = end user identifier [18].

act or |capability:

scope create/read/update/delete +
resource selector, e.g.,
invoice:row id=456) [5][6].

aud intended verifier: DB/proxy [18]

nbf/exp|freshness window) [18

jti nonce for replay defense) [18].

cnf detached JWS w/ channel binding
material to tie token use to the
specific TLS session (prevents
token replay on a different
channel) [19][23]

Formats. UOT can be JOSE/JWT (JWS signed) [18][19],
a VC carrying capabilities [3], or a UCAN capability proof
[5]. Keys are distributed via JWKS [20] and optionally
discovered with OIDC Discovery [21].

4.2 Execution flow
* Authenticate user (OIDC) and mint UOT from the
user’s key or a user-controlled capability issuer [1]
[3][5]. The identity provider (IdP) can also mint
the token. The application proxy requests a UOT
from the IdP after user login, and this UOT is then

passed to the client to be attached to requests.

e Submit query — Proxy. Client forwards SQL
without embedding the token in SQL. Instead, send
UOT in a protected side-channel (protocol
extension/header) to avoid log leakage.

e Verify UOT (sig, aud, window, jti uniqueness,
chain of capabilities) and derive stable session
claims (e.g., app.user id, app.tenant id,
app.scopes).

* Bind claims to DB session (e.g., PostgreSQL SET
LOCAL app.user_id = 'ul123") and do not accept
client-supplied GUCs.

* Enforce RLS on tables with policies referencing
session claims; execute SQL [4].

* Audit: Persist a compact, immutable action record:
(ts, user, op, resource, hash(sql), jti, token hash);
optionally hash-chain records per table for tamper-
evidence.

4.3 Why a proxy?

Many engines cannot yet validate JOSE/VC artifacts
natively. The proxy is the Policy Enforcement Point (PEP)
and token firewall. Vendors can later push verification into
the engine (native JWT/VC support) [4][7][8][9].

V. REFERENCE IMPLEMENTATION (POSTGRESQL)
5.1 Set immutable, proxy-owned GUCs:

-- Set by proxy, not by client

SET LOCAL app.user_id = 'user-123";

SET LOCAL app.tenant_id = "t-42";

SET LOCAL app.scopes = "invoice:w,profile:r’;

5.2 RLS policy examples
ALTER TABLE invoices ENABLE ROW LEVEL SECURITY;

CREATE POLICY tenant_isolation ON invoices
USING (tenant_id = current_setting('app.tenant_id’,
true));

CREATE POLICY owner_can_write ON invoices

FOR UPDATE USING (

tenant_id = current_setting('app.tenant_id', true) AND
owner_id =current_setting('app.user_id"', true)

)
RLS evaluates on every statement; policies compose with

AND/OR as needed [4].

5.3 Auditing (append-only)

CREATE TABLE audit_log (

ts timestamptz NOT NULL DEFAULT now(),
user_id text NOT NULL,
op text NOT NULL,
resource text NOT NULL,
sql_hash bytea NOT NULL,

jti text NOT NULL,

token_hash bytea NOT NULL,
prev_hash bytea,

this_hash bytea NOT NULL
)

VI. HARDENING & OPERATIONAL GUIDANCE

* Key management. Store signing/verifying keys in
HSM/KMS; rotate via JWKS kid and automated
key rollover [20].

* mTLS everywhere. Client—Proxy and Proxy—DB
channels with mutual TLS; prefer short-lived SCTs
[13].

* Replay defense. Enforce jti uniqueness per
audience and short exp; optionally require channel
binding (e.g., tls-unique) in the token proof [19]
[23].

* Scope minimalism. Map CRUD ops to least-
privilege capability strings; deny queries that
attempt resources not covered by scope [5][6].

» Statement hashing. Include canonicalized SQL
hash in the audit record; optionally bind token
proof to that hash to detect TOCTOU between
authorization and execution.

e Multi-tenant isolation. Require tenant id in every
UOT; all policies AND with tenant constraint;
validate cross-tenant queries.

e Observability. Emit structured events (user, op,
resource, jti) to SIEM; correlate with app traces.

VII. PERFORMANCE CONSIDERATIONS

Note. Actual latency/throughput impact depends on
hardware, crypto algorithms, policy complexity, and dataset
distribution; vendors should publish benchmarks alongside
reference implementations.

e Token verification cost. JWS verification is
dominated by public-key ops; amortize by caching
valid kid keys (JWKS) and using short but not per-
row tokens (one UOT per statement or per
transactional unit) [18][19][20].

* RLS overhead. Policy predicates add per-row
checks; design indexes aligned to predicate
columns (tenant id, owner id) [4].

* Connection pooling. Ensure the proxy
resets/overrides session GUCs between requests to
avoid claim bleed across pooled connections.

e Batching. Encourage set-based operations with a
single UOT covering a bounded resource set (e.g.,
row IDs list) to limit per-statement overhead while
retaining auditability.

VIII. COMPLIANCE ALIGNMENT

This section translates regulatory obligations into concrete
controls, mechanisms, and evidence artifacts that DB-EUA
can produce.

9.1 HIPAA (Privacy & Security Rule)

Objectives. Ensure confidentiality, integrity, and availability
of ePHI,; restrict access to authorized individuals; maintain
an accounting of disclosures [14].

Relevant provisions. Privacy Rule — Accounting of
disclosures (45 CFR §164.528); Security Rule — Technical
safeguards (45 CFR §164.312); Integrity (45 CFR
§164.312(c)(1)).

DB-EUA Controls. Per-operation user attribution; JWS-
backed intent + hash-chained audit; RLS for clinician-
patient or role scoping [4][18][19].

Auditor Evidence. Audit extracts; RLS catalog & change
history; JWKS rotation SOPs [20].

Residual Risks. DB superuser bypass; token replay within
window—mitigated with dual-control, short exp, jti
uniqueness, and channel binding [19][23].

9.2 SOX (Sections 302 & 404)

Objectives. Ensure accuracy of financial reporting and
effectiveness of internal controls [15].

Controls. UOT-scoped writes; immutable provenance; least-
privilege RLS [4][18][19].

Evidence. Traceability packs linking
change—user—UOT—ticket; access reviews (effective
scopes per role/team).

Residual Risks. Scope misconfiguration—address with
policy linting/tests and four-eyes review.

9.3 GDPR

Objectives. Accountability (Art. 5), consent (Art. 7), rights
(Arts. 15-20) [16].

Controls. Purpose-bound tokens; per-user logs;
erasure/portability flows [16][18].

Evidence. Consent/provenance ledger; DSR runbooks.
Residual Risks. Over-collection of claims—mitigate via
selective disclosure (SD-JWT) [10][25].

9.4 CCPA

Objectives. Rights to know, delete, opt-out, and non-
discrimination [17].

Controls. Preference-aware policies; scoped delete tokens;
user-attributed access logs.

Evidence. Fulfillment reports; allow/deny policy tests.

IX. VENDOR IMPLEMENTATION ROADMAP

10.1 Database Engine Vendors

* Phase 1 — Proxy/Extension. Ship an official wire-
protocol proxy (or extension hook) that validates
UOTs, binds trusted claims to sessions, and blocks
client-set GUCs. Provide RLS helper library and
migration recipes; publish log hygiene defaults
(e.g., restrict SQL text exposure in statement stats)
[4][24].

e Phase 2 — Native Verification. Add verification
functions (verify jws(), vc_verify()), trusted
server-only session variables, and a policy DSL.
Introduce capability-aligned indexes.

* Phase 3 — Privacy-Preserving Reads. Support SD-
JWT and ZK proofs for read authorization [10]
[25].

10.2 Cloud DB Providers

Managed JWKS & KMS integration [7][8][9][20]; attested
verification proxies; reference architectures and throughput
baselines with/without RLS.

10.3 Backend/Platform Vendors

Translate API scopes to UOTs; bind to SQL sessions; ship
starter RLS policies; add policy testing harnesses in CI/CD,;
provide SIEM exports.

10.4 Security/Compliance Tooling Vendors

Policy linters and capability analyzers (UCAN/VC); audit
compilers that assemble evidence packs for
HIPAA/SOX/GDPR/CCPA.

KPIs. Coverage of write paths under DB-EUA; % tables
with RLS; latency deltas; audit completeness (valid jti and
token digest rate).

X.COMPLIANCE SUMMARY MATRIX

Regula Key Obligations | DB-EUA Auditor Residual
tion Mechanisms | Evidence Risks
HIPAA | Privacy Rule UOT- Audit DB
(access/accountin | attributed extracts; superuser
2), Security Rule | CRUD; RLS |RLS catalog; | bypass;
(technical isolation; KMS/JWKS | token replay
safeguards, hash- SOPs [14] window
integrity) chained [19][20]
audit
SOX |§302 Capability- | Traceability | Scope
(certification), scoped packs; access | misconfig;
§404 (internal writes; reviews; insider
controls) immutable | policy test override
provenance |results [15]
(4]
GDPR |Art. 5 Purpose- Consent/ Over-

(accountability), |bound provenance | collection;
Art. 7 (consent), |tokens; per- |ledger; DSR |linkage risk

Arts. 15-20 user logs; runbooks
(rights) erasure/porta | [16][18]
bility flows

CCPA |§1798.100(b) Preference- | Fulfillment | Ambiguity

(notice), aware reports; in sale/share
§1798.105 policies; allow/deny | definitions
(delete), scoped test logs [17]

§1798.110 delete tokens

(know),

§1798.120 (opt-
out), §1798.125
(non-
discrimination)

Additionally, To align with regulatory requirements such as
NIST SP 800-207 (Zero Trust Architecture), ISO/IEC
27001:2022 controls, and GDPR/GLBA audit principles,
the DB-EUA model must ensure:

e Strong Identity Binding — every CRUD operation
is tied to a cryptographically verifiable, user-
authenticated token.

e Least-Privilege Enforcement — tokens must specify
permitted operations and data scope, preventing
unauthorized escalation.

* Tamper-Evident Audit Trails — immutable logs
must capture who accessed what data, when, and
why, supporting accountability.

¢ Replay & Forgery Protection — tokens must expire
and include cryptographic signatures to prevent
misuse.

e Traceability for Audits — systems should generate
user-attributable reports demonstrating compliance
with regulations (e.g., SOX, GDPR, HIPAA).

By embedding these controls into DB-EUA, organizations
achieve regulatory accountability, Zero Trust enforcement,
and verifiable provenance of all database operations [26]
[27]

XI. CONCLUSION

Database-Level End User Authorization (DB-EUA) re-
centers trust at the data layer by binding every database
operation to a cryptographically verifiable user identity and
intent. Unlike traditional models that rely on the application
tier to enforce access controls, DB-EUA provides tamper-
evident auditability, least-privilege enforcement, and
resilience against confused-deputy and server-compromise
attacks. Our two-token architecture, reference PostgreSQL
blueprint, and compliance mappings demonstrate that DB-
EUA is both technically feasible and operationally valuable.
While challenges remain around performance trade-offs,
proxy trust, and vendor adoption, the model aligns with
Zero Trust principles and modern regulatory demands. By
embedding verifiable provenance into the SQL path, DB-
EUA lays the foundation for accountable, privacy-
preserving, and regulation-ready data systems—turning the
database from a passive storage layer into an active enforcer
of user-centric security.

REFERENCES

[1] Hardt, D. (2012). The OAuth 2.0 Authorization Framework. IETF
RFC 6749. DOI: 10.17487/RFC6749.

[2] Sporny, M., Longley, D., Chadwick, D., et al. (2022). Decentralized
Identifiers (DIDs) v1.0. W3C Recommendation.

[3] Sporny, M., Longley, D., et al. (2019). Verifiable Credentials Data
Model 1.0. W3C Recommendation.

[4] PostgreSQL Global Development Group. Row Security Policies.
PostgreSQL Documentation.

[S] UCAN Specification. User-Controlled Authorization Networks.
ucan.xyz.

[6] W3C CCG. Authorization Capabilities for Linked Data (ZCAP-LD)
(Draft).

[71 Microsoft. Azure SQL Database and Azure Active Directory
Integration.

[8] Google Cloud. IAM Authentication for Cloud SQL.

[97 Amazon Web Services. IAM Database Authentication for
MySQL/PostgreSQL.

[10] W3C. (2023). Secure Data Storage (Draft).

[11] Cameron, K. (2005). The Laws of Identity.

[12] Decentralized Identity Foundation. (2020). Decentralized Identity
Architecture.

[13] Rose, S., Borchert, O., Mitchell, S., Connelly, S. (2020). NIST SP
800-207: Zero Trust Architecture. DOI: 10.6028/NIST.SP.800-207.

[14] U.S. HHS. HIPAA Security/Privacy Rule Resources.

[15] U.S. Congress. (2002). Sarbanes—Oxley Act of 2002 (SOX).

[16] European Union. (2016). General Data Protection Regulation
(GDPR), Regulation (EU) 2016/679.

[17] State of California. (2018). California Consumer Privacy Act
(CCPA), Cal. Civ. Code §1798.100-1798.199.

[18] Jones, M., Bradley, J., Sakimura, N. (2015). RFC 7519: JSON Web
Token (JWT). DOI: 10.17487/RFC7519.

[19] Jones, M., Bradley, J., Sakimura, N. (2015). RFC 7515: JSON Web
Signature (JWS). DOI: 10.17487/RFC7515.

[20] Jones, M. (2015). RFC 7517: JSON Web Key (JWK). DOI:
10.17487/RFC7517.

[21] OpenID Foundation. OpenID Connect Discovery 1.0.

[22] Jones, M. (2012). RFC 6750: OAuth 2.0 Bearer Token Usage. DOI:
10.17487/RFC6750.

[23] Altman, N., et al. (2010). RFC 5929: Channel Bindings for TLS.
DOI: 10.17487/RFC5929.

[24] PostgreSQL Docs. pg_stat_statements.

[25] Yasuda, K., Lodderstedt, T., et al. Selective Disclosure JWT (SD-
JWT) (IETF Draft).

[26] Rose, S., Borchert, O., Mitchell, S., Connelly, S. (2020). Zero Trust
Architecture. DOI: 10.6028/NIST.SP.800-207.

[27] ISO/IEC. (2022). ISO/IEC 27001:2022 Information security,
cybersecurity and privacy protection — Information security management
systems — Requirements.

