
Abstract Application servers are traditionally the policy enforcement point for databases. In that model, the database cannot
verify the end user’s identity or intent for each operation; it can only trust whatever context the application supplies. This creates
systemic exposure to server compromise, confused-deputy problems, and weak provenance. DB-EUA moves verifiable
authorization into the data path: every create/read/update/delete (CRUD) is accompanied by a user-authenticated,
cryptographically verifiable token that the database (or a hardened database proxy) validates and binds to the session executing
the SQL. The result is a tamper-evident, user-attributable audit trail and strong least-privilege enforcement at the DB layer—
aligned with Zero Trust principles and regulatory accountability requirements. We present: A precise threat model and trust
assumptions. A two-token architecture (server channel token + per-user operation token). A reference implementation blueprint
for PostgreSQL Row-Level Security (RLS) with a wire-protocol proxy. Hardening guidance (key management, mTLS, channel
binding, log hygiene). Compliance mappings (HIPAA, SOX, GDPR, CCPA) and a summary matrix. A practical vendor roadmap
(DB engines, cloud DBs, gateway/proxy vendors, backend platforms).

Index Terms— Zero Trust; Row-Level Security (RLS); Cryptographically Verifiable Authorization; Verifiable Credentials (VC);

I. INTRODUCTION1

Most stacks authenticate users at the edge

(OIDC/OAuth 2.0) and authorize requests in the application
tier. The app then connects to the database with a pooled
application identity (single database user/role) and performs
CRUD “on behalf of” the end user. The database has no
independent proof of the end user’s identity or intended
scope for each operation [1]. When the application is
compromised (RCE, key theft, RBAC misconfig), it can
impersonate users and write arbitrary data while the DB can
only see “the app” [7][8][9].

Zero Trust’s core message—continuously verify, least
privilege, assume breach—applies at the data layer as much
as at the network perimeter [13]. Provenance and
accountability regulations (HIPAA, SOX) and data subject
rights (GDPR/CCPA) increasingly require per-operation
auditability and demonstrable consent/authority, which is
infeasible if the DB never receives authenticated user
context tied to the specific SQL statement [14][15][16][17].

To overcome these challenges we present the DB-EUA
model. We validate that the DB-EUA model: Accurately
verifies end-user identity and intent at the database layer,
provides tamper-evident and user-attributable audit trails,
enforces least-privilege and Zero Trust principles, resists
confused-deputy attacks and application server
compromises.

1 The manuscript was submitted for review on 8/25/2025. It was
supported by The New World Foundation. All authors are affiliated to The
New World Foundation.

II.RELATED WORK

• OAuth 2.0 / OIDC. Excellent at user auth and
delegation at the application boundary, but do not
propagate signed per-operation claims to the
database [1].

• PostgreSQL RLS. Expressive row-level policies
driven by session variables; relies on the app to set
truthful context [4].

• DIDs / Verifiable Credentials (VCs). Portable,
cryptographic identity and attestations suitable for
capability delegation; not commonly enforced at
the SQL boundary today [2][3].

• UCAN / ZCAP-LD. User-controlled, delegable
capabilities; promising for least-privilege chaining
to resources (tables/rows) [5][6].

• Cloud DB IAM integrations. Azure SQL + AAD,
AWS IAM DB Auth, GCP IAM for Cloud SQL
improve who can connect, not who may change
this row now [7][8][9].

III. THREAT MODEL

Goals. Prevent the application server (or an attacker
within it) from executing arbitrary CRUD that appears as
legitimate user actions; make all writes verifiably
attributable to a specific user and scope.

Out of scope. Insider with DB superuser privileges;
physical attacks on the DB host; cryptographic primitive
failures (e.g., if JOSE/JWT are broken) [18][19].

Adversaries.
• Compromised app server: RCE/malware issuing

SQL with forged user context.
• Token thief: Attempts replay of an intercepted

token.
• Curious operator: Observes SQL logs to exfiltrate

Database-Level End User Authorization (DB-EUA)

Saurav Bhattacharya, Gaurav Deshmukh, Ankush Rastogi, Dewank Pant, Durga
Krishnamoorthy, Manan Wason, Madhavi Najana, Uttam Kumar

1

user tokens/claims.
• Confused deputy: Microservice A misuses

capabilities delegated to B.

Assumptions.
• User tokens are signed by the user’s key or by a

capability issuer under the user’s control (e.g.,
VC/UCAN), and validated independently by the
proxy/DB using a trusted key distribution (JWKS)
[3][5][18][20][21].

• The proxy/DB has authenticated transport to
clients/servers (mTLS) and maintains secure key
material (HSM/KMS) [13].

IV. ARCHITECTURE: TWO TOKEN, VERIFIABLE CRUD

4.1 Token types
• Server Channel Token (SCT): Long-lived

credential binding the proxy to the DB (e.g., mTLS
client cert + DB role).

• User Operation Token (UOT): Short-lived, scoped
token accompanying each CRUD (or batch) with
claims describing who, what, where, until when
[18][19].

UOT minimal claims (JWT/VC/UCAN):

sub subject = end user identifier [18].

act or
scope

capability:
create/read/update/delete +
resource selector, e.g.,
invoice:row_id=456) [5][6].

aud intended verifier: DB/proxy [18]

nbf/exp freshness window) [18

jti nonce for replay defense) [18].

cnf detached JWS w/ channel binding
material to tie token use to the
specific TLS session (prevents
token replay on a different
channel) [19][23]

Formats. UOT can be JOSE/JWT (JWS signed) [18][19],
a VC carrying capabilities [3], or a UCAN capability proof
[5]. Keys are distributed via JWKS [20] and optionally
discovered with OIDC Discovery [21].

4.2 Execution flow
• Authenticate user (OIDC) and mint UOT from the

user’s key or a user-controlled capability issuer [1]
[3][5]. The identity provider (IdP) can also mint
the token. The application proxy requests a UOT
from the IdP after user login, and this UOT is then

passed to the client to be attached to requests.
• Submit query → Proxy. Client forwards SQL

without embedding the token in SQL. Instead, send
UOT in a protected side-channel (protocol
extension/header) to avoid log leakage.

• Verify UOT (sig, aud, window, jti uniqueness,
chain of capabilities) and derive stable session
claims (e.g., app.user_id, app.tenant_id,
app.scopes).

• Bind claims to DB session (e.g., PostgreSQL SET
LOCAL app.user_id = 'u123') and do not accept
client-supplied GUCs.

• Enforce RLS on tables with policies referencing
session claims; execute SQL [4].

• Audit: Persist a compact, immutable action record:
(ts, user, op, resource, hash(sql), jti, token_hash);
optionally hash-chain records per table for tamper-
evidence.

4.3 Why a proxy?
Many engines cannot yet validate JOSE/VC artifacts

natively. The proxy is the Policy Enforcement Point (PEP)
and token firewall. Vendors can later push verification into
the engine (native JWT/VC support) [4][7][8][9].

V. REFERENCE IMPLEMENTATION (POSTGRESQL)

5.1 Set immutable, proxy-owned GUCs:

-- Set by proxy, not by client
SET LOCAL app.user_id = 'user-123';
SET LOCAL app.tenant_id = 't-42';
SET LOCAL app.scopes = 'invoice:w,profile:r';

5.2 RLS policy examples

ALTER TABLE invoices ENABLE ROW LEVEL SECURITY;

CREATE POLICY tenant_isolation ON invoices
USING (tenant_id = current_setting('app.tenant_id',
true));

CREATE POLICY owner_can_write ON invoices
FOR UPDATE USING (
 tenant_id = current_setting('app.tenant_id', true) AND
 owner_id = current_setting('app.user_id', true)
);

RLS evaluates on every statement; policies compose with
AND/OR as needed [4].

5.3 Auditing (append-only)

CREATE TABLE audit_log (
 ts timestamptz NOT NULL DEFAULT now(),
 user_id text NOT NULL,
 op text NOT NULL,
 resource text NOT NULL,
 sql_hash bytea NOT NULL,
 jti text NOT NULL,

 token_hash bytea NOT NULL,
 prev_hash bytea,
 this_hash bytea NOT NULL
);

VI. HARDENING & OPERATIONAL GUIDANCE

• Key management. Store signing/verifying keys in
HSM/KMS; rotate via JWKS kid and automated
key rollover [20].

• mTLS everywhere. Client→Proxy and Proxy→DB
channels with mutual TLS; prefer short-lived SCTs
[13].

• Replay defense. Enforce jti uniqueness per
audience and short exp; optionally require channel
binding (e.g., tls-unique) in the token proof [19]
[23].

• Scope minimalism. Map CRUD ops to least-
privilege capability strings; deny queries that
attempt resources not covered by scope [5][6].

• Statement hashing. Include canonicalized SQL
hash in the audit record; optionally bind token
proof to that hash to detect TOCTOU between
authorization and execution.

• Multi-tenant isolation. Require tenant_id in every
UOT; all policies AND with tenant constraint;
validate cross-tenant queries.

• Observability. Emit structured events (user, op,
resource, jti) to SIEM; correlate with app traces.

VII. PERFORMANCE CONSIDERATIONS

Note. Actual latency/throughput impact depends on
hardware, crypto algorithms, policy complexity, and dataset
distribution; vendors should publish benchmarks alongside
reference implementations.

• Token verification cost. JWS verification is
dominated by public-key ops; amortize by caching
valid kid keys (JWKS) and using short but not per-
row tokens (one UOT per statement or per
transactional unit) [18][19][20].

• RLS overhead. Policy predicates add per-row
checks; design indexes aligned to predicate
columns (tenant_id, owner_id) [4].

• Connection pooling. Ensure the proxy
resets/overrides session GUCs between requests to
avoid claim bleed across pooled connections.

• Batching. Encourage set-based operations with a
single UOT covering a bounded resource set (e.g.,
row IDs list) to limit per-statement overhead while
retaining auditability.

VIII.COMPLIANCE ALIGNMENT

This section translates regulatory obligations into concrete
controls, mechanisms, and evidence artifacts that DB-EUA
can produce.

9.1 HIPAA (Privacy & Security Rule)
Objectives. Ensure confidentiality, integrity, and availability
of ePHI; restrict access to authorized individuals; maintain
an accounting of disclosures [14].

Relevant provisions. Privacy Rule – Accounting of
disclosures (45 CFR §164.528); Security Rule – Technical
safeguards (45 CFR §164.312); Integrity (45 CFR
§164.312(c)(1)).
DB-EUA Controls. Per-operation user attribution; JWS-
backed intent + hash-chained audit; RLS for clinician-
patient or role scoping [4][18][19].
Auditor Evidence. Audit extracts; RLS catalog & change
history; JWKS rotation SOPs [20].
Residual Risks. DB superuser bypass; token replay within
window—mitigated with dual-control, short exp, jti
uniqueness, and channel binding [19][23].

9.2 SOX (Sections 302 & 404)
Objectives. Ensure accuracy of financial reporting and
effectiveness of internal controls [15].
Controls. UOT-scoped writes; immutable provenance; least-
privilege RLS [4][18][19].
Evidence. Traceability packs linking
change→user→UOT→ticket; access reviews (effective
scopes per role/team).
Residual Risks. Scope misconfiguration—address with
policy linting/tests and four-eyes review.

9.3 GDPR
Objectives. Accountability (Art. 5), consent (Art. 7), rights
(Arts. 15–20) [16].
Controls. Purpose-bound tokens; per-user logs;
erasure/portability flows [16][18].
Evidence. Consent/provenance ledger; DSR runbooks.
Residual Risks. Over-collection of claims—mitigate via
selective disclosure (SD-JWT) [10][25].

9.4 CCPA
Objectives. Rights to know, delete, opt-out, and non-
discrimination [17].
Controls. Preference-aware policies; scoped delete tokens;
user-attributed access logs.
Evidence. Fulfillment reports; allow/deny policy tests.

IX. VENDOR IMPLEMENTATION ROADMAP

10.1 Database Engine Vendors
• Phase 1 — Proxy/Extension. Ship an official wire-

protocol proxy (or extension hook) that validates
UOTs, binds trusted claims to sessions, and blocks
client-set GUCs. Provide RLS helper library and
migration recipes; publish log hygiene defaults
(e.g., restrict SQL text exposure in statement stats)
[4][24].

• Phase 2 — Native Verification. Add verification
functions (verify_jws(), vc_verify()), trusted
server-only session variables, and a policy DSL.
Introduce capability-aligned indexes.

• Phase 3 — Privacy-Preserving Reads. Support SD-
JWT and ZK proofs for read authorization [10]
[25].

10.2 Cloud DB Providers

3

Managed JWKS & KMS integration [7][8][9][20]; attested
verification proxies; reference architectures and throughput
baselines with/without RLS.

10.3 Backend/Platform Vendors
Translate API scopes to UOTs; bind to SQL sessions; ship
starter RLS policies; add policy testing harnesses in CI/CD;
provide SIEM exports.

10.4 Security/Compliance Tooling Vendors
Policy linters and capability analyzers (UCAN/VC); audit
compilers that assemble evidence packs for
HIPAA/SOX/GDPR/CCPA.
KPIs. Coverage of write paths under DB-EUA; % tables
with RLS; latency deltas; audit completeness (valid jti and
token digest rate).

X.COMPLIANCE SUMMARY MATRIX

Regula
tion

Key Obligations DB-EUA

Mechanisms

Auditor

Evidence

Residual

Risks

HIPAA Privacy Rule
(access/accountin
g), Security Rule
(technical
safeguards,
integrity)

UOT-
attributed
CRUD; RLS
isolation;
hash-
chained
audit

Audit
extracts;
RLS catalog;
KMS/JWKS
SOPs [14]
[19][20]

DB
superuser
bypass;
token replay
window

SOX §302
(certification),
§404 (internal
controls)

Capability-
scoped
writes;
immutable
provenance

Traceability
packs; access
reviews;
policy test
results [15]
[4]

Scope
misconfig;
insider
override

GDPR Art. 5
(accountability),
Art. 7 (consent),
Arts. 15–20
(rights)

Purpose-
bound
tokens; per-
user logs;
erasure/porta
bility flows

Consent/
provenance
ledger; DSR
runbooks
[16][18]

Over-
collection;
linkage risk

CCPA §1798.100(b)
(notice),
§1798.105
(delete),
§1798.110
(know),
§1798.120 (opt-
out), §1798.125
(non-
discrimination)

Preference-
aware
policies;
scoped
delete tokens

Fulfillment
reports;
allow/deny
test logs [17]

Ambiguity
in sale/share
definitions

Additionally, To align with regulatory requirements such as
NIST SP 800-207 (Zero Trust Architecture), ISO/IEC
27001:2022 controls, and GDPR/GLBA audit principles,
the DB-EUA model must ensure:

• Strong Identity Binding – every CRUD operation
is tied to a cryptographically verifiable, user-
authenticated token.

• Least-Privilege Enforcement – tokens must specify
permitted operations and data scope, preventing
unauthorized escalation.

• Tamper-Evident Audit Trails – immutable logs
must capture who accessed what data, when, and
why, supporting accountability.

• Replay & Forgery Protection – tokens must expire
and include cryptographic signatures to prevent
misuse.

• Traceability for Audits – systems should generate
user-attributable reports demonstrating compliance
with regulations (e.g., SOX, GDPR, HIPAA).

By embedding these controls into DB-EUA, organizations
achieve regulatory accountability, Zero Trust enforcement,
and verifiable provenance of all database operations [26]
[27]

XI. CONCLUSION

Database-Level End User Authorization (DB-EUA) re-
centers trust at the data layer by binding every database
operation to a cryptographically verifiable user identity and
intent. Unlike traditional models that rely on the application
tier to enforce access controls, DB-EUA provides tamper-
evident auditability, least-privilege enforcement, and
resilience against confused-deputy and server-compromise
attacks. Our two-token architecture, reference PostgreSQL
blueprint, and compliance mappings demonstrate that DB-
EUA is both technically feasible and operationally valuable.
While challenges remain around performance trade-offs,
proxy trust, and vendor adoption, the model aligns with
Zero Trust principles and modern regulatory demands. By
embedding verifiable provenance into the SQL path, DB-
EUA lays the foundation for accountable, privacy-
preserving, and regulation-ready data systems—turning the
database from a passive storage layer into an active enforcer
of user-centric security.

REFERENCES

[1] Hardt, D. (2012). The OAuth 2.0 Authorization Framework. IETF
RFC 6749. DOI: 10.17487/RFC6749.
[2] Sporny, M., Longley, D., Chadwick, D., et al. (2022). Decentralized
Identifiers (DIDs) v1.0. W3C Recommendation.
[3] Sporny, M., Longley, D., et al. (2019). Verifiable Credentials Data
Model 1.0. W3C Recommendation.
[4] PostgreSQL Global Development Group. Row Security Policies.
PostgreSQL Documentation.
[5] UCAN Specification. User-Controlled Authorization Networks.
ucan.xyz.
[6] W3C CCG. Authorization Capabilities for Linked Data (ZCAP-LD)
(Draft).
[7] Microsoft. Azure SQL Database and Azure Active Directory
Integration.
[8] Google Cloud. IAM Authentication for Cloud SQL.
[9] Amazon Web Services. IAM Database Authentication for
MySQL/PostgreSQL.
[10] W3C. (2023). Secure Data Storage (Draft).
[11] Cameron, K. (2005). The Laws of Identity.
[12] Decentralized Identity Foundation. (2020). Decentralized Identity
Architecture.
[13] Rose, S., Borchert, O., Mitchell, S., Connelly, S. (2020). NIST SP
800-207: Zero Trust Architecture. DOI: 10.6028/NIST.SP.800-207.
[14] U.S. HHS. HIPAA Security/Privacy Rule Resources.
[15] U.S. Congress. (2002). Sarbanes–Oxley Act of 2002 (SOX).
[16] European Union. (2016). General Data Protection Regulation
(GDPR), Regulation (EU) 2016/679.

[17] State of California. (2018). California Consumer Privacy Act
(CCPA), Cal. Civ. Code §1798.100–1798.199.
[18] Jones, M., Bradley, J., Sakimura, N. (2015). RFC 7519: JSON Web
Token (JWT). DOI: 10.17487/RFC7519.
[19] Jones, M., Bradley, J., Sakimura, N. (2015). RFC 7515: JSON Web
Signature (JWS). DOI: 10.17487/RFC7515.
[20] Jones, M. (2015). RFC 7517: JSON Web Key (JWK). DOI:
10.17487/RFC7517.
[21] OpenID Foundation. OpenID Connect Discovery 1.0.
[22] Jones, M. (2012). RFC 6750: OAuth 2.0 Bearer Token Usage. DOI:
10.17487/RFC6750.
[23] Altman, N., et al. (2010). RFC 5929: Channel Bindings for TLS.
DOI: 10.17487/RFC5929.
[24] PostgreSQL Docs. pg_stat_statements.
[25] Yasuda, K., Lodderstedt, T., et al. Selective Disclosure JWT (SD-
JWT) (IETF Draft).
[26] Rose, S., Borchert, O., Mitchell, S., Connelly, S. (2020). Zero Trust
Architecture. DOI: 10.6028/NIST.SP.800-207.
[27] ISO/IEC. (2022). ISO/IEC 27001:2022 Information security,
cybersecurity and privacy protection — Information security management
systems — Requirements.

5

