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Abstract Application servers are traditionally the policy enforcement point for databases. In that model, the database cannot
verify the end user’s identity or intent for each operation; it can only trust whatever context the application supplies. This creates
systemic exposure to server compromise, confused-deputy problems, and weak provenance. DB-EUA moves verifiable
authorization into the data path: every create/read/update/delete (CRUD) is accompanied by a user-authenticated,
cryptographically verifiable token that the database (or a hardened database proxy) validates and binds to the session executing
the SQL. The result is a tamper-evident, user-attributable audit trail and strong least-privilege enforcement at the DB layer—
aligned with Zero Trust principles and regulatory accountability requirements. We present: A precise threat model and trust
assumptions. A two-token architecture (server channel token + per-user operation token). A reference implementation blueprint
for PostgreSQL Row-Level Security (RLS) with a wire-protocol proxy. Hardening guidance (key management, mTLS, channel
binding, log hygiene). Compliance mappings (HIPAA, SOX, GDPR, CCPA) and a summary matrix. A practical vendor roadmap
(DB engines, cloud DBs, gateway/proxy vendors, backend platforms).

Index Terms— Zero Trust; Row-Level Security (RLS); Cryptographically Verifiable Authorization; Verifiable Credentials (VC);

1. INTRODUCTION

Most stacks authenticate users at the edge

(OIDC/OAuth 2.0) and authorize requests in the application
tier. The app then connects to the database with a pooled
application identity (single database user/role) and performs
CRUD “on behalf of” the end user. The database has no
independent proof of the end user’s identity or intended
scope for each operation [1]. When the application is
compromised (RCE, key theft, RBAC misconfig), it can
impersonate users and write arbitrary data while the DB can
only see “the app” [7][8][9].

Zero Trust’s core message—continuously verify, least
privilege, assume breach—applies at the data layer as much
as at the network perimeter [13]. Provenance and
accountability regulations (HIPAA, SOX) and data subject
rights (GDPR/CCPA) increasingly require per-operation
auditability and demonstrable consent/authority, which is
infeasible if the DB never receives authenticated user
context tied to the specific SQL statement [14][15][16][17].

To overcome these challenges we present the DB-EUA
model. We validate that the DB-EUA model: Accurately
verifies end-user identity and intent at the database layer,
provides tamper-evident and user-attributable audit trails,
enforces least-privilege and Zero Trust principles, resists
confused-deputy  attacks and  application  server
compromises.
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II. RELATED WORK

e OAuth 2.0 / OIDC. Excellent at user auth and
delegation at the application boundary, but do not
propagate signed per-operation claims to the
database [1].

e PostgreSQL RLS. Expressive row-level policies
driven by session variables; relies on the app to set
truthful context [4].

e DIDs / Verifiable Credentials (VCs). Portable,
cryptographic identity and attestations suitable for
capability delegation; not commonly enforced at
the SQL boundary today [2][3].

e UCAN / ZCAP-LD. User-controlled, delegable
capabilities; promising for least-privilege chaining
to resources (tables/rows) [5][6].

* Cloud DB IAM integrations. Azure SQL + AAD,
AWS IAM DB Auth, GCP IAM for Cloud SQL
improve who can connect, not who may change
this row now [7][8][9].

III. THREAT MODEL

Goals. Prevent the application server (or an attacker
within it) from executing arbitrary CRUD that appears as
legitimate user actions; make all writes verifiably
attributable to a specific user and scope.

Out of scope. Insider with DB superuser privileges;
physical attacks on the DB host; cryptographic primitive
failures (e.g., if JOSE/JWT are broken) [18][19].

Adversaries.

e Compromised app server: RCE/malware issuing
SQL with forged user context.

e Token thief: Attempts replay of an intercepted
token.

e Curious operator: Observes SQL logs to exfiltrate



user tokens/claims.
e Confused deputy: Microservice A misuses
capabilities delegated to B.

Assumptions.

*  User tokens are signed by the user’s key or by a
capability issuer under the user’s control (e.g.,
VC/UCAN), and validated independently by the
proxy/DB using a trusted key distribution (JWKS)
[3I[5][18][20][21].

* The proxy/DB has authenticated transport to
clients/servers (mTLS) and maintains secure key
material (HSM/KMS) [13].

IV. ARCHITECTURE: TWO TOKEN, VERIFIABLE CRUD

4.1 Token types

* Server Channel Token (SCT): Long-lived
credential binding the proxy to the DB (e.g., mTLS
client cert + DB role).

e User Operation Token (UOT): Short-lived, scoped
token accompanying each CRUD (or batch) with
claims describing who, what, where, until when
[18][19].

UOT minimal claims (JWT/VC/UCAN):

sub subject = end user identifier [18].

act or |capability:

scope create/read/update/delete +
resource selector, e.g.,
invoice:row id=456) [5][6].

aud intended verifier: DB/proxy [18]

nbf/exp|freshness window) [18

jti nonce for replay defense) [18].

cnf detached JWS w/ channel binding
material to tie token use to the
specific TLS session (prevents
token replay on a different
channel) [19][23]

Formats. UOT can be JOSE/JWT (JWS signed) [18][19],
a VC carrying capabilities [3], or a UCAN capability proof
[5]. Keys are distributed via JWKS [20] and optionally
discovered with OIDC Discovery [21].

4.2 Execution flow
*  Authenticate user (OIDC) and mint UOT from the
user’s key or a user-controlled capability issuer [1]
[3][5]. The identity provider (IdP) can also mint
the token. The application proxy requests a UOT
from the IdP after user login, and this UOT is then

passed to the client to be attached to requests.

e Submit query — Proxy. Client forwards SQL
without embedding the token in SQL. Instead, send
UOT in a protected side-channel (protocol
extension/header) to avoid log leakage.

e Verify UOT (sig, aud, window, jti uniqueness,
chain of capabilities) and derive stable session
claims  (e.g.,  app.user id,  app.tenant id,
app.scopes).

* Bind claims to DB session (e.g., PostgreSQL SET
LOCAL app.user_id = 'ul123") and do not accept
client-supplied GUCs.

* Enforce RLS on tables with policies referencing
session claims; execute SQL [4].

*  Audit: Persist a compact, immutable action record:
(ts, user, op, resource, hash(sql), jti, token hash);
optionally hash-chain records per table for tamper-
evidence.

4.3 Why a proxy?

Many engines cannot yet validate JOSE/VC artifacts
natively. The proxy is the Policy Enforcement Point (PEP)
and token firewall. Vendors can later push verification into
the engine (native JWT/VC support) [4][7][8][9].

V. REFERENCE IMPLEMENTATION (POSTGRESQL)
5.1 Set immutable, proxy-owned GUCs:

-- Set by proxy, not by client

SET LOCAL app.user_id = 'user-123";

SET LOCAL app.tenant_id = "t-42";

SET LOCAL app.scopes = "invoice:w,profile:r’;

5.2 RLS policy examples
ALTER TABLE invoices ENABLE ROW LEVEL SECURITY;

CREATE POLICY tenant_isolation ON invoices
USING (tenant_id = current_setting('app.tenant_id’,
true));

CREATE POLICY owner_can_write ON invoices

FOR UPDATE USING (

tenant_id = current_setting('app.tenant_id', true) AND
owner_id =current_setting('app.user_id"', true)

)
RLS evaluates on every statement; policies compose with

AND/OR as needed [4].

5.3 Auditing (append-only)

CREATE TABLE audit_log (

ts timestamptz NOT NULL DEFAULT now(),
user_id text NOT NULL,
op text NOT NULL,
resource text NOT NULL,
sql_hash bytea NOT NULL,

jti text NOT NULL,



token_hash bytea NOT NULL,
prev_hash bytea,

this_hash bytea NOT NULL
)

VI. HARDENING & OPERATIONAL GUIDANCE

* Key management. Store signing/verifying keys in
HSM/KMS; rotate via JWKS kid and automated
key rollover [20].

*  mTLS everywhere. Client—Proxy and Proxy—DB
channels with mutual TLS; prefer short-lived SCTs
[13].

* Replay defense. Enforce jti uniqueness per
audience and short exp; optionally require channel
binding (e.g., tls-unique) in the token proof [19]
[23].

* Scope minimalism. Map CRUD ops to least-
privilege capability strings; deny queries that
attempt resources not covered by scope [5][6].

» Statement hashing. Include canonicalized SQL
hash in the audit record; optionally bind token
proof to that hash to detect TOCTOU between
authorization and execution.

e  Multi-tenant isolation. Require tenant id in every
UOT; all policies AND with tenant constraint;
validate cross-tenant queries.

e Observability. Emit structured events (user, op,
resource, jti) to SIEM; correlate with app traces.

VII. PERFORMANCE CONSIDERATIONS

Note. Actual latency/throughput impact depends on
hardware, crypto algorithms, policy complexity, and dataset
distribution; vendors should publish benchmarks alongside
reference implementations.

e Token verification cost. JWS verification is
dominated by public-key ops; amortize by caching
valid kid keys (JWKS) and using short but not per-
row tokens (one UOT per statement or per
transactional unit) [18][19][20].

* RLS overhead. Policy predicates add per-row
checks; design indexes aligned to predicate
columns (tenant id, owner id) [4].

* Connection pooling. Ensure the proxy
resets/overrides session GUCs between requests to
avoid claim bleed across pooled connections.

e Batching. Encourage set-based operations with a
single UOT covering a bounded resource set (e.g.,
row IDs list) to limit per-statement overhead while
retaining auditability.

VIII. COMPLIANCE ALIGNMENT

This section translates regulatory obligations into concrete
controls, mechanisms, and evidence artifacts that DB-EUA
can produce.

9.1 HIPAA (Privacy & Security Rule)

Objectives. Ensure confidentiality, integrity, and availability
of ePHI,; restrict access to authorized individuals; maintain
an accounting of disclosures [14].

Relevant provisions. Privacy Rule — Accounting of
disclosures (45 CFR §164.528); Security Rule — Technical
safeguards (45 CFR §164.312); Integrity (45 CFR
§164.312(c)(1)).

DB-EUA Controls. Per-operation user attribution; JWS-
backed intent + hash-chained audit; RLS for clinician-
patient or role scoping [4][18][19].

Auditor Evidence. Audit extracts; RLS catalog & change
history; JWKS rotation SOPs [20].

Residual Risks. DB superuser bypass; token replay within
window—mitigated with dual-control, short exp, jti
uniqueness, and channel binding [19][23].

9.2 SOX (Sections 302 & 404)

Objectives. Ensure accuracy of financial reporting and
effectiveness of internal controls [15].

Controls. UOT-scoped writes; immutable provenance; least-
privilege RLS [4][18][19].

Evidence. Traceability packs linking
change—user—UOT—ticket; access reviews (effective
scopes per role/team).

Residual Risks. Scope misconfiguration—address with
policy linting/tests and four-eyes review.

9.3 GDPR

Objectives. Accountability (Art. 5), consent (Art. 7), rights
(Arts. 15-20) [16].

Controls.  Purpose-bound  tokens;  per-user  logs;
erasure/portability flows [16][18].

Evidence. Consent/provenance ledger; DSR runbooks.
Residual Risks. Over-collection of claims—mitigate via
selective disclosure (SD-JWT) [10][25].

9.4 CCPA

Objectives. Rights to know, delete, opt-out, and non-
discrimination [17].

Controls. Preference-aware policies; scoped delete tokens;
user-attributed access logs.

Evidence. Fulfillment reports; allow/deny policy tests.

IX. VENDOR IMPLEMENTATION ROADMAP

10.1 Database Engine Vendors

*  Phase 1 — Proxy/Extension. Ship an official wire-
protocol proxy (or extension hook) that validates
UOTs, binds trusted claims to sessions, and blocks
client-set GUCs. Provide RLS helper library and
migration recipes; publish log hygiene defaults
(e.g., restrict SQL text exposure in statement stats)
[4][24].

e Phase 2 — Native Verification. Add verification
functions  (verify jws(), vc_verify()), trusted
server-only session variables, and a policy DSL.
Introduce capability-aligned indexes.

*  Phase 3 — Privacy-Preserving Reads. Support SD-
JWT and ZK proofs for read authorization [10]
[25].

10.2 Cloud DB Providers



Managed JWKS & KMS integration [7][8][9][20]; attested
verification proxies; reference architectures and throughput
baselines with/without RLS.

10.3 Backend/Platform Vendors

Translate API scopes to UOTs; bind to SQL sessions; ship
starter RLS policies; add policy testing harnesses in CI/CD,;
provide SIEM exports.

10.4 Security/Compliance Tooling Vendors

Policy linters and capability analyzers (UCAN/VC); audit
compilers  that assemble evidence packs for
HIPAA/SOX/GDPR/CCPA.

KPIs. Coverage of write paths under DB-EUA; % tables
with RLS; latency deltas; audit completeness (valid jti and
token digest rate).

X.COMPLIANCE SUMMARY MATRIX

Regula Key Obligations | DB-EUA Auditor Residual
tion Mechanisms | Evidence Risks
HIPAA | Privacy Rule UOT- Audit DB
(access/accountin | attributed extracts; superuser
2), Security Rule | CRUD; RLS |RLS catalog; | bypass;
(technical isolation; KMS/JWKS | token replay
safeguards, hash- SOPs [14] window
integrity) chained [19][20]
audit
SOX |§302 Capability- | Traceability | Scope
(certification), scoped packs; access | misconfig;
§404 (internal writes; reviews; insider
controls) immutable | policy test override
provenance |results [15]
(4]
GDPR |Art. 5 Purpose- Consent/ Over-

(accountability), |bound provenance | collection;
Art. 7 (consent), |tokens; per- |ledger; DSR |linkage risk

Arts. 15-20 user logs; runbooks
(rights) erasure/porta | [16][18]
bility flows

CCPA |§1798.100(b) Preference- | Fulfillment | Ambiguity

(notice), aware reports; in sale/share
§1798.105 policies; allow/deny | definitions
(delete), scoped test logs [17]

§1798.110 delete tokens

(know),

§1798.120 (opt-
out), §1798.125
(non-
discrimination)

Additionally, To align with regulatory requirements such as
NIST SP 800-207 (Zero Trust Architecture), ISO/IEC
27001:2022 controls, and GDPR/GLBA audit principles,
the DB-EUA model must ensure:

e Strong Identity Binding — every CRUD operation
is tied to a cryptographically verifiable, user-
authenticated token.

e Least-Privilege Enforcement — tokens must specify
permitted operations and data scope, preventing
unauthorized escalation.

*  Tamper-Evident Audit Trails — immutable logs
must capture who accessed what data, when, and
why, supporting accountability.

¢ Replay & Forgery Protection — tokens must expire
and include cryptographic signatures to prevent
misuse.

e Traceability for Audits — systems should generate
user-attributable reports demonstrating compliance
with regulations (e.g., SOX, GDPR, HIPAA).

By embedding these controls into DB-EUA, organizations
achieve regulatory accountability, Zero Trust enforcement,
and verifiable provenance of all database operations [26]
[27]

XI. CONCLUSION

Database-Level End User Authorization (DB-EUA) re-
centers trust at the data layer by binding every database
operation to a cryptographically verifiable user identity and
intent. Unlike traditional models that rely on the application
tier to enforce access controls, DB-EUA provides tamper-
evident auditability, least-privilege enforcement, and
resilience against confused-deputy and server-compromise
attacks. Our two-token architecture, reference PostgreSQL
blueprint, and compliance mappings demonstrate that DB-
EUA is both technically feasible and operationally valuable.
While challenges remain around performance trade-offs,
proxy trust, and vendor adoption, the model aligns with
Zero Trust principles and modern regulatory demands. By
embedding verifiable provenance into the SQL path, DB-
EUA lays the foundation for accountable, privacy-
preserving, and regulation-ready data systems—turning the
database from a passive storage layer into an active enforcer
of user-centric security.
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