

1

Abstract Pega Platform™ is a market leader in BPM/CRM, low-code, buy-and-build, and build-for-change solutions, enabling

organizations to develop digital solutions more rapidly compared to traditional programming. Pega Platform™ provides a robust

application development environment, with separate portals for citizen developers (“App Studio”), system architects (“Designer

Studio”), and system administrators (“Admin Studio”) to rapidly design, build, and manage applications. Pega Application code

created using these studios is saved to rulesets, with versions, in Pega’s own code repository. When development teams grow

large and multiple functionalities must be developed and delivered in parallel, managing code within the same application ruleset

version becomes challenging. The Pega Platform uses Pega branches to support parallel development. These Pega branches

allow each team to create and update rules without impacting other teams.

Pega branching is designed for frequent code merges to trunk versions and continuous release to production. In many scenarios,

frequent merging and releasing capabilities to production are not feasible for all parallel development teams; they may need to

remain in development mode longer before moving to production. Providing a future version for release is a single solution that

most customers adopt; it is efficient when customer priorities and release dates remain stable, but it becomes inefficient when

those priorities and dates change. In this research paper, we propose an innovative solution to address this problem: a custom

branch that maintains development tracks without merging into the trunk, along with its advantages and disadvantages. This

proposed solution, called “Named Ruleset,” enabled parallel development teams to remain in a custom branch for years while

still incorporating trunk changes. We envision that this custom branching solution can address the limitations of Pega branching

and advance the Pega DevOps practice for larger enterprise teams and implementations.

Index Terms—Continuous Delivery, Feature Toggles, Healthcare IT Systems, Low-Code Platforms, Long-Lived Development Tracks,

Named Ruleset, Pega DevOps, Pega Branching and Merging, Pega Ruleset Versioning, Release Governance

I. INTRODUCTION1

VER the last decade, all regulated industries have

experienced a rapid demand for digital modernization,

which is difficult to achieve through traditional

programming alone due to complexity, skillset

requirements, and resource constraints. Low-code

application platforms emerged as a unique solution that

enables organizations to build applications rapidly, using

drag-and-drop UIs, reusable components, and easily

configurable configurations, while also delivering secure,

compliant, and integrated digital experiences [1]. Market

predictions reinforce this shift: by the end of 2028, Agentic

AI will be implemented via enterprise LCAPs in 4 of 5

1 Harikrishnan Muthukrishnan, Principal IT Developer, Independent

Researcher, Jacksonville, Florida, USA, https://orcid.org/0009-0001-7938-

9623, hari.linux@gmail.com.

Chandrashekar Konasirasagi, Principal IT Developer, Independent

Researcher, Jacksonville, Florida, USA, https://orcid.org/0009-0009-4620-

4424, sk.chandrashekar@gmail.com.

businesses globally [2], and the global low-code

development platform market is expected to reach $187.0

billion by 2030 [3], signaling a structural change in how

regulated digital systems are built and maintained. One of

the most significant advantages of mature low-code

platforms is the ability to both buy and build. With decades

of industry experience, these platforms already offer proven

vertical solutions for healthcare [4], banking [5], insurance

[6], and related sectors [7], built on Business Process

Management (BPM), Customer Relationship Management

(CRM) [8], and Sales Automation (SA) [9]. Horizontal

capabilities such as drag-and-drop UI, process and logic

automation, built-in integrations, DevSecOps tools, one-

click deployment [10] with auto-scaling, and built-in rule-

based access control (RBAC), etc., provide the platform’s

strength, while vertical solutions deliver industry-ready

speed. Together, they let organizations modernize safely

without losing control or reinventing the wheel.

Pega Platform™ has emerged as a market leader in the low-

code application space for regulated enterprises, where

reliability, auditability, and controlled change are essential.

Named Ruleset: A Long-Lived Parallel

Development Architecture for Enterprise-Scale

Pega Implementations

Harikrishnan Muthukrishnan and Chandrashekar Konasirasagi

O

https://orcid.org/0009-0001-7938-9623
https://orcid.org/0009-0001-7938-9623
https://orcid.org/0009-0009-4620-4424
https://orcid.org/0009-0009-4620-4424

Pega platform provides a complete Integrated development

environment through multiple development portals and a

unique code repository available within the platform. In

Pega, everything is a versioned rule stored in the database,

retrieved, and executed in real-time by the PRPC engine.

Applications, user IDs, processes, UI, APIs, and

middleware settings are all managed as rules with built-in

version control [11]. Pega uses multiple rulesets, each with

associated versions, to store Pega rules [12]. These rule sets

are part of an application rule, which includes application

versions and is associated with an access group [13]. The

top-level component, access group, is assigned to a user

(Operator) to provide the necessary application

functionality and versioning within the Pega platform.

Together, these rulesets, application rules, and access

groups define the structure of the code repository and user

access provisioning within the Pega Platform.

II. BACKGROUND AND PROBLEM STATEMENT.

When development teams grow large and multiple

functionalities must be developed and delivered in parallel,

managing code within the same application ruleset becomes

challenging. If two teams are working on the same

application ruleset and the same rule, the rules' “check-in”

back to the trunk results in a conflict. Resolving conflicts

during active development/sprint work requires

understanding other functionalities developed by parallel

teams, which can delay overall project delivery of

individual teams.

Fig. 1. Parallel Development in Pega [16]

An example of this scenario is shown in Figure 1. Team

Alpha and Team Beta are developing an HR Onboarding

application. Team Alpha is assigned to create a new UI

feature. Team Beta is assigned to work on the candidate

profile information. Although each team works

independently, both features modify the same rule sets: HR,

HRApps, and HRAppsInt. Developers from both teams

must collaborate to resolve conflicts before they can check

in code.

III. PEGA SOLUTION FOR PARALLEL DEVELOPMENT

Pega Platform™ uses branches to support parallel

development. Using Pega branches, each team creates its

own development branch, which contains a branch

application tag and branch rulesets. During development,

each team manages changes to its own development branch

rulesets, which are isolated from those of others. This

enables the team to complete development without rule

conflicts. When development is complete, each team

merges its branch into the main ruleset, called the trunk.

During this merger, Pega will identify any rule conflicts;

developers must resolve them, and reviewers must approve

them before merging the code.

Fig. 2. Branching and Merging in Pega [15]

For example, Fig. 2, above, team Alpha and team Beta

complete development and unit testing in their respective

branches. Merge their branch changes into trunk, thereby

making both changes available for regression testing on the

trunk version.

IV. PEGA BRANCH: BEST PRACTICES AND LIMITATIONS

When working with a Pega branching solution, it is

important to consider best practices, limitations, and

challenges. In this section, we will cover the following

aspects of working with a Rule branch: 1) best practices for

using a branch, 2) limitations of using branches, and

mitigations.

A. Pega best practice in branch development [15].

• Maintain short-lived branches:

o Leverage release toggles for features in

flight.

o Leverage feature toggles for feature work

that spans across multiple Development

sprints.

o Merge a branch only once.

o Modify the leveraged features outside of

a branch in coordination with the team.

• Do not add branches to the Production application;

create a separate application rule for working with

branches.

• Use the Sandbox environment, which allows the

3

association of Dynamic System Settings (DSS)

and classes to branch when planning a major

refactor of classes and DSS.

• Do not migrate branches from Dev to Test; merge

the code to the trunk before migrating.

Work with short-lived branches: - Pega recommends

merging your branch frequently with the trunk. As per Pega

best practice, delaying the merger can lead to the following

issues:

• Conflict resolution: - Resolving conflicts becomes

increasingly complex as changes increase.

• Integration issues: - Early testing becomes difficult,

especially when a production-like configuration of

the application is unavailable.

• Tracking dependencies: - Managing dependencies

between features is complex, as changes are not

ready for early integration.

B. Limitations of Pega branches and mitigations [15].

When you work with a branch, managing certain aspects of

Pega rules development will cause you to encounter the

following limitations:

• Modify non-rule-resolved rules: - These types of

regulations will affect everyone outside of the

branch, coordinate with other developers for

resolution, for example, an application record.

• Modify data instances: - You cannot modify data

instances in a branch; you must associate the data

instance with the application ruleset to modify.

• Modify classes in rules: - you cannot modify classes

in the branch; coordinate with other developers for

resolution in the development environment.

• Merge withdrawn rules: - You cannot test rules that

are withdrawn in branches until after you complete

a code merger. You could use a dedicated branch

to withdraw rules and merge and test them

independently.

V. CHALLENGES OF PEGA BRANCHING IN ENTERPRISE

IMPLEMENTATIONS

Pega branches are ideal for short development without

toggles, such as a minor feature or user story, that merge

into the trunk within a sprint or two. Production support

releases, typically scheduled every two weeks, rely

extensively on Pega branches and benefit significantly from

their flexibility.

For long-running parallel development teams, the best

practice for Pega branching is to implement a release- or

feature-level toggle in the code and merge frequently into

the trunk. We identified three scenarios, listed below, in

which this approach is not feasible for large organizations

with long-running parallel development tracks.

A. Toggles make the code complex than the actual logic.

In real-world scenarios, we observed that Pega branching

can complicate development and testing, with multiple

toggles at both the release and feature levels. This also

makes the code difficult to understand due to numerous

toggles and scenarios, with more toggle logic than

application logic in a standard implementation. Pega's

solution to this toggle problem is to issue another release to

remove toggles, which is impractical for project-based

organizations.

B. Parallel development tracks with conflicting release

dates.

In many scenarios, parallel development tracks will be

underway, with the actual release date unknown. There are

multiple possibilities, such as releasing all tracks

simultaneously or in a different sequence, which were not

finalized during the project's initiation and development

phases. Developing toggle logic for all these scenarios

became challenging.

C. Long-lived Development tracks.

A parallel development team can run for months to

sometimes years, based on the scope of the work. Some

scenarios could cause the work to be put on the shelf for

years or altogether scrapped. An example is the retirement

of a legacy system, repeatedly delayed due to

organizational policy and budget changes. This may result

in redundant code in the trunk or unused code in production

for years, necessitating additional development and testing

to clean up the code.

VI. METHODS AND PROCEDURES: CUSTOM BRANCHING

The initial solution we implemented for parallel

development teams was to provide a higher minor version

in the trunk. This allocation was based on the known

release-date sequence: for example, Track 1 received minor

version 01.05.01, and Track 2 received minor version

01.06.01 because Track 2's release date was later than

Track 1's. This would work well if there were no changes in

release dates and all development tracks were made to

production in sequence. However, the release dates changed

as business priorities shifted, and some development was

abandoned, resulting in extensive cleanup and rework of the

trunk rulesets.

To address these issues with long-running development

tracks, we developed a solution called “Named Ruleset”.

Our design goal was to enable visibility for long-running

tracks to trunk updates, avoid adding toggle logic solely for

a future release, keep them in the branch until the release

date is confirmed, and merge to trunk only once during the

development cycle.

A. How Custom branching is designed

Our solution was to use the layer architecture of the Pega

application and ruleset, and to build a custom ruleset and

application on top of the trunk version. We appended a

four-character track-specific name to the ruleset and

application; we identified this custom branching solution as

“Named Ruleset”. We also created “Named Ruleset”

specific Pega access groups, appended the same four

characters to these group names to support the newly

created application [18], and maintained a consistent

naming convention across the application. This resonated

with Pega branching, a short name for the named ruleset,

which I appended to application rules, rulesets, and access

groups as a standard. Together, these named access groups,

named applications, and named rule sets built on top of the

trunk version provided branching capabilities for a long-

running development team. This enabled the development

team to work on features without affecting the trunk, while

still monitoring trunk changes and merging them only after

release dates are confirmed.

Fig. 3. User Profile in Pega, HRApps-Trunk Version

Fig. 4. User Profile in Pega, HRApps-Alpha Version

Fig. 5. User Profile in Pega, HRApps-Beta Version

Named ruleset structure with Team Alpha and Beta as

examples provided below in Fig. 7, please note that each

team can still create branches in their own named rulesets

for small development or user stories, which will help them

align with Pega best practice for DevOps.

Consecutive diagrams, Fig. 3, Fig. 4, and Fig. 5, explain the

order in which the “Named Rulesets” Alpha and Beta are

prioritized in the developer and user profile [19], compared

to trunk versions. “Named Rulesets” are always prioritized

over the trunk by design, thereby providing branch

capabilities.

Fig. 6. User Profile in Pega, HRApps-Beta Version

Access groups and Applications created as part of “Named

Rulesets” Alpha and Beta are shown in Fig. 6 with four

characters of identifier appended.

5

Fig. 7. Custom “Named Ruleset” Structure.

VII. DISCUSSION AND RESULTS OF CUSTOM BRANCHING

Our custom “Named Ruleset” enabled parallel development

teams to remain in the custom branch for years while still

incorporating changes from the trunk. These long-running

tracks only merged into the trunk when the release date is

confirmed. Thus, implementing a toggle was unnecessary to

support the Pega branch and integration; it reduced

complexity and saved time during development and testing.

Merge conflict resolution was straightforward because each

named ruleset's check-in process was always notified of the

trunk version changes.

We designed and implemented custom branching and

applied our case study methodology for more than seven

years across multiple projects involving Pega parallel

development teams. We continue to monitor the case study

results with new parallel tracks we are still onboarding.

This seven-year duration is a perfect lead time to identify

the pros and cons of this custom feature. Pega custom

Branching, which we named “Named Ruleset”, solved the

issues we faced with parallel development. The advantages

and disadvantages of this solution are presented below.

A. Pros

• Each development team has its own custom

application rule, rulesets, and access groups to

independently develop/validate their functionality

without impacting others.

• Named ruleset can be migrated to QA for regression

and User acceptance testing.

• No need for toggle logic to support parallel

development; however, it can be added at the

release level if needed.

• “Named Ruleset” can see trunk version changes in

real-time and retrofit trunk version changes on a

planned date, not mandatory to align with

production release dates.

B. Cons

• Initial setup of named ruleset, applications, rulesets,

access groups, and associated QA/UAT login

setup requires additional time.

• Due to the overhead required for the first setup, we

only enforced a named ruleset for a track that has

more than 3 to 4 sprints of work.

C. Best practices

• We only allowed named rulesets in Dev and Test

Regions; merging to trunk was mandatory for

migration to stage and production. This enabled

testing in an actual “production-like” stage

environment in terms of ruleset structure.

TABLE I

COMPARATIVE ANALYSIS TABLE

Dimension Git/SVN Pega Native

Branching

Named Ruleset

Branch

Lifetime
Short to

medium

Short-lived Long-lived

(months–years)

Merge

Frequency
Frequent

Frequent Single planned

merge

Toggle

Dependency

High for long

tracks

High None required

Conflict

Resolution

File-level,

manual

Rule-level Isolated by

design

Auditability Tool-dependent Platform-native Platform-native

Suitability for

Regulated

Environments

Moderate Moderate High

Runtime

Awareness

Compile-time Runtime Runtime

Support for

Uncertain

Release Dates

Limited Limited Strong

Operational

Overhead

Medium Medium Low after initial

setup

Comparison of Git vs Pega native and Custom Named Ruleset.

D. Comparative Analysis with Git/SVN

• A comparative analysis of Pega Named Ruleset

custom branching with traditional Git/SVN and

Pega Native branching is provided in Table 1. This

comparative analysis clearly demonstrates the

advantages of “Named Ruleset” in enterprise-level

development and release cycles spanning multiple

years.

Fig. 8. Longitudinal case study spanning 7 years.

E. Low-Code Cross-Platform Comparison

• Cross-platform perspective: Most enterprise low-

code platforms, including market leaders such as

Microsoft Power Platform, optimize parallel

development through trunk-based or short-lived

branching models aligned with DevOps best

practices that favor frequent integration to limit

merge risk [22] [23]. Platforms such as Mendix

(Git-backed repositories) [24] and OutSystems

(lifecycle-driven governance) [25] support

collaboration at scale; however, long-running

development tracks with uncertain release

timelines are typically treated as exceptions due to

escalating dependencies and stabilization

complexity. The Named Ruleset architecture

addresses this gap by enabling governance-

preserving, long-lived parallel development,

maintaining durable isolation while deferring trunk

integration until release readiness, thereby

avoiding premature mergers and excessive toggle-

driven complexity in regulated enterprise

environments.

VIII. AUTOMATION AND INTEGRATION FOR CUSTOM

BRANCH.

As part of this architecture, we implemented full

automation to create and maintain the “Named Ruleset” in

multiple phases. Automation enabled us to identify and

adapt to development track requirements carefully and to

scale the solution for the case study. During the initial

stages, we started with implementing a manual “named

ruleset” creation, where the Pega administrator for the team

manually created custom “Named rulesets”, associated

applications, and custom access groups. We also

implemented automated detection of rule conflicts between

“Named Ruleset” and trunk versions following rule

merging into the trunk. This utility generates reports on

conflicting rules that must be resolved after merging.

During the second stage, following the successful

implementation of the named ruleset, as the number of

named ruleset creations for the case study increased, we

developed automation using Pega rules to create the

“Names Ruleset” and exposed it as APIs. These APIs are

then triggered via the Jenkins Orchestration platform, which

provides comprehensive automation and additional DevOps

capabilities.

In the third stage, we extended automation to standard Pega

DevOps processes for “Names Rulesets”, such as the “Lock

and Roll”, migrating code versions to higher environments,

and validating guardrails as a stage gate, among others.

The “Lock and Roll” [17] process locks one version of the

ruleset and creates a new one to support continuous

development, sprint cycles, and quarterly and yearly release

cycles. Migrating the “named ruleset” code to higher

7

environments and validating guardrails before migration are

standard DevOps practices for the Pega platform.

Figure 8 illustrates the evolution of the Named Ruleset

approach across seven years, progressing from manual

setup to fully automated DevOps-driven provisioning. The

longitudinal observation spans multiple concurrent

enterprise development tracks, demonstrating architectural

stability, scalability, and sustained operational benefits over

time. In the first year, we began with a limited number of

development tracks, onboarding a POC to assess the

effectiveness of the new methodology, and gradually

expanded the number of tracks as we implemented

additional automation and governance. In a few years, the

development reached a peak, with six to eight named

rulesets used in parallel, and then entered a steady state,

with development velocity stabilizing over time.

IX. CASE STUDY: ENTERPRISE HEALTHCARE

ORGANIZATION

A large U.S. health insurance organization operating in

adherence to HIPAA and SOC2-regulated environment

onboarded a mission-critical enterprise platform in legacy

systems to the Pega platform with the intention of

consolidating legacy applications, reducing onboarding lead

times, and bringing innovations in healthcare insurance

solutions.

Over time, the platform has accumulated multiple

concurrent long-running business initiatives, Parallel

regulatory development, enhancements, frequent production

hotfixes, strict uptime (99.99%) requirements, and external

auditability requirements, all of which have become

standard operating procedures.

Traditional Pega versioning models, based on sequenced

rule-set versions and application-level branching, began to

exhibit operational strain, particularly in coordinating

parallel development, as business priorities changed and

release dates, testing, and stabilization plans were disrupted.

Named Ruleset Strategy: To address these issues, the

platform architects introduced the Named Ruleset pattern as

a long-lived, parallel-development construct rather than a

short-term branching mechanism.

Measurable Outcomes: The introduction of the Named

Ruleset approach delivered quantifiable, enterprise-scale

impact.

• ~ 20% gain in development and testing effort for

long-running development tracks due to avoidance

of frequent mergers, adding toggle-level code, and

testing toggle logic.

• ~50% reduction in deployment-related rework and

conflict resolution compared to branch-based

development.

• Zero critical production incidents attributed to

parallel development collisions

• Faster regulatory response, enabling isolated

compliance updates without halting other

initiatives

• Improved release confidence, supporting continuous

delivery with 99.99% uptime

• Operational cost savings exceeding $1M annually

through reduced rework, faster remediation, and

improved platform stability.

X. CONCLUSION.

This paper introduces the Named Ruleset, a custom parallel

development architecture created to overcome the practical

limitations of native Pega branching in large, long-running

enterprise programs. The model allows teams to operate in

purpose-aligned, long-lived branches for years while safely

consuming trunk-level changes. By reducing reliance on

feature toggles, avoiding premature trunk integration, and

simplifying conflict resolution, the approach is well-suited

to environments with extended or uncertain release

timelines. Validated through multi-year healthcare and

regulated-industry implementations, the Named Ruleset

improved developer autonomy, strengthened release

governance, reduced merge risk, and delivered an estimated

20% annual savings in development and testing effort.

While the initial setup overhead is most suitable for

development tracks exceeding several sprints, the long-term

benefits outweigh this cost in large programs, where

stability, predictability, and governance are non-negotiable.

Although this paper focused on Pega, this innovation

highlights the need to move beyond short-lived branching

assumptions that apply to other low-code platforms

operating in regulated DevSecOps environments across

multiple verticals [22]. As enterprise systems grow in

scope, functionality, and longevity, parallel development

models must accommodate extended timelines, shifting

priorities, and regulated release controls [20]. The “Named

Ruleset” approach represents a practical step in this

direction, enabling a foundation for future research and

tooling to support scalable, governed parallel development

on enterprise low-code platforms. We believe that this

custom branching solution can address the limitations of

Pega branching and advance the Pega DevOps practice to

the next level for AI-ready innovations [21].

REFERENCES

[1] P. Chen, X. Cui, E. Xu, and H. Zhang, “Research on the Teaching

Experiment Mode of Low-code Platform Integrated with Intelligent

Agent,” IECT ’25, pp. 103–110, Jun. 2025,

doi: 10.1145/3764206.3764222

[2] “Magic Quadrant for Enterprise Low-Code application platforms,”

www.gartner.com, Jul. 28, 2025.

https://www.gartner.com/doc/reprints?id=1-

2LJ2SZQ2&ct=250725&st=sb (accessed Dec. 23, 2025).

[3] R. A. Markets, “Global $187 billion Low-Code Development

Platform market to 2030,” GlobeNewswire News Room, Nov. 10,

2020. [Online]. Available: https://www.globenewswire.com/news-

release/2020/11/10/2123468/0/en/Global-187-Billion-Low-Code-

Development-Platform-Market-to-2030.html

[4] “Pega for Healthcare & Life Sciences | Pega,” Dec. 28, 2021.

https://www.pega.com/industries/healthcare

https://www.globenewswire.com/news-release/2020/11/10/2123468/0/en/Global-187-Billion-Low-Code-Development-Platform-Market-to-2030.html
https://www.globenewswire.com/news-release/2020/11/10/2123468/0/en/Global-187-Billion-Low-Code-Development-Platform-Market-to-2030.html
https://www.globenewswire.com/news-release/2020/11/10/2123468/0/en/Global-187-Billion-Low-Code-Development-Platform-Market-to-2030.html
https://www.pega.com/industries/healthcare

[5] “Pega Financial Services: Find solutions built for you | Pega,” Oct.

08, 2021. https://www.pega.com/industries/financial-services

[6] “Insurance software | Pega,” Apr. 12, 2022.

https://www.pega.com/industries/insurance

[7] “Industry software solutions for workflows and decisioning | Pega,”

Sep. 16, 2022. https://www.pega.com/industries

[8] “Pega Customer Service built for personalized experiences | Pega,”

May 05, 2025. https://www.pega.com/products/customer-service

[9] “AI-powered Sales Automation Platform | Pega Sales Automation,”

Sep. 22, 2025. https://www.pega.com/products/sales-automation

[10] “DevOps that work with your organization | Pega,” Feb. 08, 2023.

https://www.pega.com/products/platform/devops

[11] “PegaSystems Documentation.”

https://docs.pega.com/bundle/platform/page/platform/hub/pega-

platform-overview.html

[12] “Rulesets | Pega Academy,” Jan. 13, 2020.

https://academy.pega.com/topic/rulesets/v1

[13] “PegaSystems Documentation.”

https://docs.pega.com/bundle/platform/page/platform/app-

dev/access-groups.html

[14] “PegaSystems Documentation.”

https://docs.pega.com/bundle/platform/page/platform/app-

dev/branches-branch-rulesets.html

[15] “Best practices for branch-based development | Pega Academy,” Sep.

08, 2021. https://academy.pega.com/topic/best-practices-branch-

based-development/v1

[16] “Parallel development | Pega Academy,” Mar. 04, 2020.

https://academy.pega.com/topic/parallel-development/v1/in/2866

[17] “Locking and rolling ruleset versions | Pega Academy,” Dec. 11,

2020. https://academy.pega.com/topic/locking-and-rolling-ruleset-

versions/v2

[18] “Application versioning | Pega Academy,” Mar. 04, 2020.

https://academy.pega.com/topic/application-versioning/v2

[19] “Personas, operators, and work access | Pega Academy,” Mar. 20,

2023. https://academy.pega.com/topic/personas-operators-and-work-

access/v1

[20] B. Binzer, D. Fürstenau, and T. J. Winkler, “Bridging Business and

IT Through Low-Code/No-Code: Insights into Business-IT

Collaboration in Enterprise Citizen Developer Programs,”

Proceedings of the ... Annual Hawaii International Conference on

System Sciences/Proceedings of the Annual Hawaii International

Conference on System Sciences, Jan. 2025, doi:

10.24251/hicss.2025.054.

[21] “Pega GenAI: the first generative AI for the enterprise | Pega,” Apr.

10, 2024. https://www.pega.com/technology/generative-ai

[22] “DORA | Capabilities: Trunk-based development.”

https://dora.dev/capabilities/trunk-based-development

[23] M. Heuer, C. Kurtz, and T. Böhmann, “Towards a governance of

Low-Code development platforms using the example of Microsoft

Power Platform in a multinational company,” Proceedings of the ...

Annual Hawaii International Conference on System

Sciences/Proceedings of the Annual Hawaii International Conference

on System Sciences, Jan. 2022, doi: 10.24251/hicss.2022.831.

[24] “Version Control Management Tools | Mendix Evaluation Guide,”

Mendix. https://www.mendix.com/evaluation-guide/app-

lifecycle/develop/version-control/

[25] OutSystems, “Development collaboration and version control,”

OutSystems. https://www.outsystems.com/evaluation-

guide/lifecycle-management/version-control

Harikrishnan Muthukrishnan, Principal IT Developer, Independent

Researcher, Jacksonville, Florida, USA, https://orcid.org/0009-0001-7938-

9623, hari.linux@gmail.com.

Harikrishnan Muthukrishnan is a Senior Member of IEEE, a Fellow of

BCS, and a member of the Forbes Technology Council. He is also a

Distinguished Member of the Soft Computing Research Society and serves

on the Computer Advisory Board at the University of Florida.

He has authored and co-authored more than 10 peer-reviewed, high-impact

publications in journals, conference proceedings, and practitioner

platforms. He regularly serves as a reviewer and a member of the technical

program committee for IEEE and Springer-affiliated conferences and

journals. His work focuses on enterprise-scale low-code architecture,

DevSecOps governance, and the modernization of regulated systems.

Chandrasekhar Konasirasagi, Principal IT Developer, Independent

Researcher, Jacksonville, Florida, USA, https://orcid.org/0009-0009-4620-

4424, sk.chandrashekar@gmail.com.

https://www.pega.com/industries/financial-services
https://www.pega.com/industries/insurance
https://www.pega.com/industries
https://www.pega.com/products/customer-service
https://www.pega.com/products/sales-automation
https://www.pega.com/products/platform/devops
https://docs.pega.com/bundle/platform/page/platform/hub/pega-platform-overview.html
https://docs.pega.com/bundle/platform/page/platform/hub/pega-platform-overview.html
https://academy.pega.com/topic/rulesets/v1
https://docs.pega.com/bundle/platform/page/platform/app-dev/access-groups.html
https://docs.pega.com/bundle/platform/page/platform/app-dev/access-groups.html
https://docs.pega.com/bundle/platform/page/platform/app-dev/branches-branch-rulesets.html
https://docs.pega.com/bundle/platform/page/platform/app-dev/branches-branch-rulesets.html
https://academy.pega.com/topic/best-practices-branch-based-development/v1
https://academy.pega.com/topic/best-practices-branch-based-development/v1
https://academy.pega.com/topic/parallel-development/v1/in/2866
https://academy.pega.com/topic/locking-and-rolling-ruleset-versions/v2
https://academy.pega.com/topic/locking-and-rolling-ruleset-versions/v2
https://academy.pega.com/topic/application-versioning/v2
https://academy.pega.com/topic/personas-operators-and-work-access/v1
https://academy.pega.com/topic/personas-operators-and-work-access/v1
https://www.pega.com/technology/generative-ai
https://dora.dev/capabilities/trunk-based-development
https://www.mendix.com/evaluation-guide/app-lifecycle/develop/version-control/
https://www.mendix.com/evaluation-guide/app-lifecycle/develop/version-control/
https://www.outsystems.com/evaluation-guide/lifecycle-management/version-control
https://www.outsystems.com/evaluation-guide/lifecycle-management/version-control
https://orcid.org/0009-0001-7938-9623
https://orcid.org/0009-0001-7938-9623
mailto:hari.linux@gmail.com
https://orcid.org/0009-0009-4620-4424
https://orcid.org/0009-0009-4620-4424

