Named Ruleset: A Long-Lived Parallel
Development Architecture for Enterprise-Scale
Pega Implementations

Harikrishnan Muthukrishnan and Chandrashekar Konasirasagi

Abstract Pega Platform™ is a market leader in BPM/CRM, low-code, buy-and-build, and build-for-change solutions, enabling
organizations to develop digital solutions more rapidly compared to traditional programming. Pega Platform™ provides a robust
application development environment, with separate portals for citizen developers (“App Studio”), system architects (“Designer
Studio”), and system administrators (“Admin Studio”) to rapidly design, build, and manage applications. Pega Application code
created using these studios is saved to rulesets, with versions, in Pega’s own code repository. When development teams grow
large and multiple functionalities must be developed and delivered in parallel, managing code within the same application ruleset
version becomes challenging. The Pega Platform uses Pega branches to support parallel development. These Pega branches
allow each team to create and update rules without impacting other teams.

Pega branching is designed for frequent code merges to trunk versions and continuous release to production. In many scenarios,
frequent merging and releasing capabilities to production are not feasible for all parallel development teams; they may need to
remain in development mode longer before moving to production. Providing a future version for release is a single solution that
most customers adopt; it is efficient when customer priorities and release dates remain stable, but it becomes inefficient when
those priorities and dates change. In this research paper, we propose an innovative solution to address this problem: a custom
branch that maintains development tracks without merging into the trunk, along with its advantages and disadvantages. This
proposed solution, called “Named Ruleset,” enabled parallel development teams to remain in a custom branch for years while
still incorporating trunk changes. We envision that this custom branching solution can address the limitations of Pega branching
and advance the Pega DevOps practice for larger enterprise teams and implementations.

Index Terms—Continuous Delivery, Feature Toggles, Healthcare IT Systems, Low-Code Platforms, Long-Lived Development Tracks,
Named Ruleset, Pega DevOps, Pega Branching and Merging, Pega Ruleset Versioning, Release Governance

businesses globally [2], and the global low-code
development platform market is expected to reach $187.0
billion by 2030 [3], signaling a structural change in how
regulated digital systems are built and maintained. One of
the most significant advantages of mature low-code
platforms is the ability to both buy and build. With decades
of industry experience, these platforms already offer proven
vertical solutions for healthcare [4], banking [5], insurance
[6], and related sectors [7], built on Business Process
Management (BPM), Customer Relationship Management
(CRM) [8], and Sales Automation (SA) [9]. Horizontal
capabilities such as drag-and-drop UI, process and logic
automation, built-in integrations, DevSecOps tools, one-
click deployment [10] with auto-scaling, and built-in rule-
based access control (RBAC), etc., provide the platform’s
strength, while vertical solutions deliver industry-ready
speed. Together, they let organizations modernize safely

I. INTRODUCTION

OVER the last decade, all regulated industries have
experienced a rapid demand for digital modernization,
which is difficult to achieve through traditional
programming alone due to complexity, skillset
requirements, and resource constraints. Low-code
application platforms emerged as a unique solution that
enables organizations to build applications rapidly, using
drag-and-drop Uls, reusable components, and easily
configurable configurations, while also delivering secure,
compliant, and integrated digital experiences [1]. Market
predictions reinforce this shift: by the end of 2028, Agentic
Al will be implemented via enterprise LCAPs in 4 of 5

Harikrishnan Muthukrishnan, Principal IT Developer, Independent

Researcher, Jacksonville, Florida, USA, https://orcid.org/0009-0001-7938-
9623, hari.linux@gmail.com.

Chandrashekar Konasirasagi, Principal IT Developer, Independent
Researcher, Jacksonville, Florida, USA, https://orcid.org/0009-0009-4620-
4424, sk.chandrashekar@gmail.com.

without losing control or reinventing the wheel.

Pega Platform™ has emerged as a market leader in the low-
code application space for regulated enterprises, where
reliability, auditability, and controlled change are essential.

https://orcid.org/0009-0001-7938-9623
https://orcid.org/0009-0001-7938-9623
https://orcid.org/0009-0009-4620-4424
https://orcid.org/0009-0009-4620-4424

Pega platform provides a complete Integrated development
environment through multiple development portals and a
unique code repository available within the platform. In
Pega, everything is a versioned rule stored in the database,
retrieved, and executed in real-time by the PRPC engine.
Applications, user IDs, processes, UI, APIs, and
middleware settings are all managed as rules with built-in
version control [11]. Pega uses multiple rulesets, each with
associated versions, to store Pega rules [12]. These rule sets
are part of an application rule, which includes application
versions and is associated with an access group [13]. The
top-level component, access group, is assigned to a user
(Operator) to provide the necessary application
functionality and versioning within the Pega platform.
Together, these rulesets, application rules, and access
groups define the structure of the code repository and user
access provisioning within the Pega Platform.

II. BACKGROUND AND PROBLEM STATEMENT.

When development teams grow large and multiple
functionalities must be developed and delivered in parallel,
managing code within the same application ruleset becomes
challenging. If two teams are working on the same
application ruleset and the same rule, the rules' “check-in”
back to the trunk results in a conflict. Resolving conflicts
during active development/sprint ~work requires
understanding other functionalities developed by parallel
teams, which can delay overall project delivery of
individual teams.

HR
HRApps
HRAppsint

HR-A HR-B
HRApps-A HRApps-B
HRAppsint-A HRAppsint-B

Fig. 1. Parallel Development in Pega [16]

An example of this scenario is shown in Figure 1. Team
Alpha and Team Beta are developing an HR Onboarding
application. Team Alpha is assigned to create a new Ul
feature. Team Beta is assigned to work on the candidate
profile information. Although each team works
independently, both features modify the same rule sets: HR,
HRApps, and HRAppsInt. Developers from both teams
must collaborate to resolve conflicts before they can check
in code.

III. PEGA SOLUTION FOR PARALLEL DEVELOPMENT

Pega Platform™ uses branches to support parallel
development. Using Pega branches, each team creates its
own development branch, which contains a branch
application tag and branch rulesets. During development,
each team manages changes to its own development branch
rulesets, which are isolated from those of others. This
enables the team to complete development without rule
conflicts. When development is complete, each team
merges its branch into the main ruleset, called the trunk.
During this merger, Pega will identify any rule conflicts;
developers must resolve them, and reviewers must approve
them before merging the code.

Branched rule:
Quantity Request
decision table

@ *

Developer A

n Ruleset
01.01-01
Two or more developers can . *
work in the same ruleset - Branched rule:
version . —y—a Quantity Request
Developer B = decision table

Ruleset
01-01-01

Fig. 2. Branching and Merging in Pega [15]

For example, Fig. 2, above, team Alpha and team Beta
complete development and unit testing in their respective
branches. Merge their branch changes into trunk, thereby
making both changes available for regression testing on the
trunk version.

IV. PEGA BRANCH: BEST PRACTICES AND LIMITATIONS

When working with a Pega branching solution, it is
important to consider best practices, limitations, and
challenges. In this section, we will cover the following
aspects of working with a Rule branch: 1) best practices for
using a branch, 2) limitations of using branches, and
mitigations.

A. Pega best practice in branch development [15].

e Maintain short-lived branches:

o Leverage release toggles for features in
flight.

o Leverage feature toggles for feature work
that spans across multiple Development
sprints.

o Merge a branch only once.

o Modify the leveraged features outside of
a branch in coordination with the team.

e Do not add branches to the Production application;
create a separate application rule for working with
branches.

e Use the Sandbox environment, which allows the

association of Dynamic System Settings (DSS)
and classes to branch when planning a major
refactor of classes and DSS.

e Do not migrate branches from Dev to Test; merge
the code to the trunk before migrating.

Work with short-lived branches: - Pega recommends
merging your branch frequently with the trunk. As per Pega
best practice, delaying the merger can lead to the following
issues:

e Conflict resolution: - Resolving conflicts becomes
increasingly complex as changes increase.

o Integration issues: - Early testing becomes difficult,
especially when a production-like configuration of
the application is unavailable.

e Tracking dependencies: - Managing dependencies
between features is complex, as changes are not
ready for early integration.

B. Limitations of Pega branches and mitigations [15].

When you work with a branch, managing certain aspects of
Pega rules development will cause you to encounter the
following limitations:

e Modify non-rule-resolved rules: - These types of
regulations will affect everyone outside of the
branch, coordinate with other developers for
resolution, for example, an application record.

e Modify data instances: - You cannot modify data
instances in a branch; you must associate the data
instance with the application ruleset to modify.

e Modify classes in rules: - you cannot modify classes
in the branch; coordinate with other developers for
resolution in the development environment.

e Merge withdrawn rules: - You cannot test rules that
are withdrawn in branches until after you complete
a code merger. You could use a dedicated branch
to withdraw rules and merge and test them
independently.

V. CHALLENGES OF PEGA BRANCHING IN ENTERPRISE
IMPLEMENTATIONS

Pega branches are ideal for short development without
toggles, such as a minor feature or user story, that merge
into the trunk within a sprint or two. Production support
releases, typically scheduled every two weeks, rely
extensively on Pega branches and benefit significantly from
their flexibility.

For long-running parallel development teams, the best
practice for Pega branching is to implement a release- or
feature-level toggle in the code and merge frequently into
the trunk. We identified three scenarios, listed below, in
which this approach is not feasible for large organizations
with long-running parallel development tracks.

A. Toggles make the code complex than the actual logic.

In real-world scenarios, we observed that Pega branching
can complicate development and testing, with multiple
toggles at both the release and feature levels. This also

makes the code difficult to understand due to numerous
toggles and scenarios, with more toggle logic than
application logic in a standard implementation. Pega's
solution to this toggle problem is to issue another release to
remove toggles, which is impractical for project-based
organizations.

B. Parallel development tracks with conflicting release
dates.

In many scenarios, parallel development tracks will be
underway, with the actual release date unknown. There are
multiple possibilities, such as releasing all tracks
simultaneously or in a different sequence, which were not
finalized during the project's initiation and development
phases. Developing toggle logic for all these scenarios
became challenging.

C. Long-lived Development tracks.

A parallel development team can run for months to
sometimes years, based on the scope of the work. Some
scenarios could cause the work to be put on the shelf for
years or altogether scrapped. An example is the retirement
of a legacy system, repeatedly delayed due to
organizational policy and budget changes. This may result
in redundant code in the trunk or unused code in production
for years, necessitating additional development and testing
to clean up the code.

VI. METHODS AND PROCEDURES: CUSTOM BRANCHING

The initial solution we implemented for parallel
development teams was to provide a higher minor version
in the trunk. This allocation was based on the known
release-date sequence: for example, Track 1 received minor
version 01.05.01, and Track 2 received minor version
01.06.01 because Track 2's release date was later than
Track 1's. This would work well if there were no changes in
release dates and all development tracks were made to
production in sequence. However, the release dates changed
as business priorities shifted, and some development was
abandoned, resulting in extensive cleanup and rework of the
trunk rulesets.

To address these issues with long-running development
tracks, we developed a solution called “Named Ruleset”.
Our design goal was to enable visibility for long-running
tracks to trunk updates, avoid adding toggle logic solely for
a future release, keep them in the branch until the release
date is confirmed, and merge to trunk only once during the
development cycle.

A. How Custom branching is designed

Our solution was to use the layer architecture of the Pega
application and ruleset, and to build a custom ruleset and
application on top of the trunk version. We appended a
four-character track-specific name to the ruleset and
application; we identified this custom branching solution as
“Named Ruleset”. We also created “Named Ruleset”
specific Pega access groups, appended the same four

characters to these group names to support the newly
created application [18], and maintained a consistent
naming convention across the application. This resonated
with Pega branching, a short name for the named ruleset,
which I appended to application rules, rulesets, and access
groups as a standard. Together, these named access groups,
named applications, and named rule sets built on top of the
trunk version provided branching capabilities for a long-
running development team. This enabled the development
team to work on features without affecting the trunk, while
still monitoring trunk changes and merging them only after
release dates are confirmed.

Access

Application

Access group
Portal Layout
Work Pool

Server

Name pega885dev
Node 192.168.49.2

Rulesets

HR_BETA 01.01.01
HRApps:Administrators_BETA
Developer

PegaSample

Directory /webwh
URI /prweb/app/Pega

HRAdmin@pega.com:

HRApps BETA:01-01
HRApps:01-01

HRAppsint BETA:01-01

HRAppsint:01-01

Access

Application HR 01.01.01

Access group HRApps:Administrators
Portal Layout Developer

Work Pool PegaSample
Server

Name pegag8Sdev Directory /webwb

Node 192.168.49.2 URI /prweb/app/

Rulesets

HRAdmin@pega.com:
HRApps:01-01

HRAppsint:01-01
UI-Kit-7:15-01-01
Pega-ProcessCommander:08-08
Pega-DeploymentDefaults:08-08
Pega-DecisionSimulation:08-08
Pega-DecisionScience:08-08
Pega-DecisionArchitect:08-08

Fig. 3. User Profile in Pega, HRApps-Trunk Version

Access

Application

Access group
Portal Layout
Work Pool

Server

Name pega885dev
Node 192.168.49.2

Rulesets

HRAdmin@pega.com
HRApps_ALPHA:01-01
HRApps:01-01
HRAppsint_ALPHA:01
HRAppsInt:01-01
Ul-Kit-7:15-01-01

HR_ALPHA 01.01.01
HRApps:Administrators_ALPHA
Developer

PegaSample

Directory /webwb
URI /prweb/app/Pegal

Pega-ProcessCommander:08-08
Pega-DeploymentDefaults:08-08
Pega-DecisionSimulation:08-08
Pega-DecisionScience:08-08
Pega-DecisionArchitect:08-08

Fig. 4. User Profile in Pega, HRApps-Alpha Version

UI-Kit-7:15-01-01
Pega-ProcessCommander:08-08
Pega-DeploymentDefaults:08-08
Pega-DecisionSimulation:08-08
Pega-DecisionScience:08-08
Pega-DecisionArchitect:08-08

Fig. 5. User Profile in Pega, HRApps-Beta Version

Named ruleset structure with Team Alpha and Beta as
examples provided below in Fig. 7, please note that each
team can still create branches in their own named rulesets
for small development or user stories, which will help them
align with Pega best practice for DevOps.

Consecutive diagrams, Fig. 3, Fig. 4, and Fig. 5, explain the
order in which the “Named Rulesets” Alpha and Beta are
prioritized in the developer and user profile [19], compared
to trunk versions. “Named Rulesets” are always prioritized
over the trunk by design, thereby providing branch
capabilities.

Application Access
Use the radio button to select a default access group

Access Group Application

Yy ® HRApps:Administrators

E

HR 01.01.01
> O HRApps:Administratars ALPHA HR_ALPHA D1.01.01

> O HRApps:Administrators_BETA HR_BETA 01.01.01

Fig. 6. User Profile in Pega, HRApps-Beta Version

Access groups and Applications created as part of “Named
Rulesets” Alpha and Beta are shown in Fig. 6 with four
characters of identifier appended.

HR_ALPHA - Application
HRApps_ALPHA- Ruleset
HRAppsint_ALPHA - Ruleset

4 A4

ALPHA_BRANCH1 ALPHA_BRANCH2

HR - Application
HRApps- Ruleset
HRAppsint - Ruleset

HR_BETA - Application
HRApps_BETA- Ruleset
HRAppsint_BETA - Ruleset

v A4

BETA_BRANCH1 BETA_BRANCH2

Fig. 7. Custom “Named Ruleset” Structure.

VII. DISCUSSION AND RESULTS OF CUSTOM BRANCHING

Our custom “Named Ruleset” enabled parallel development
teams to remain in the custom branch for years while still
incorporating changes from the trunk. These long-running
tracks only merged into the trunk when the release date is
confirmed. Thus, implementing a toggle was unnecessary to
support the Pega branch and integration; it reduced
complexity and saved time during development and testing.

Merge conflict resolution was straightforward because each
named ruleset's check-in process was always notified of the
trunk version changes.

We designed and implemented custom branching and
applied our case study methodology for more than seven
years across multiple projects involving Pega parallel
development teams. We continue to monitor the case study
results with new parallel tracks we are still onboarding.
This seven-year duration is a perfect lead time to identify
the pros and cons of this custom feature. Pega custom

Branching, which we named “Named Ruleset”, solved the
issues we faced with parallel development. The advantages
and disadvantages of this solution are presented below.

A. Pros

e FEach development team has its own custom
application rule, rulesets, and access groups to
independently develop/validate their functionality
without impacting others.

e Named ruleset can be migrated to QA for regression
and User acceptance testing.

e No need for toggle logic to support parallel
development; however, it can be added at the
release level if needed.

e “Named Ruleset” can see trunk version changes in
real-time and retrofit trunk version changes on a
planned date, not mandatory to align with
production release dates.

B. Cons

o [Initial setup of named ruleset, applications, rulesets,
access groups, and associated QA/UAT login
setup requires additional time.

e Due to the overhead required for the first setup, we
only enforced a named ruleset for a track that has
more than 3 to 4 sprints of work.

C. Best practices

e We only allowed named rulesets in Dev and Test
Regions; merging to trunk was mandatory for
migration to stage and production. This enabled
testing in an actual “production-like” stage
environment in terms of ruleset structure.

TABLEI
COMPARATIVE ANALYSIS TABLE

Dimension Git/SVN Pega Native Named Ruleset
Branching
Branch Short-lived Long-lived
Lifetime Short to (months—years)
; Y
medium

Merge Frequent Single planned
Frequency Frequent merge
Toggle High for long High None required
Dependency tracks
Conflict File-level, Rule-level Isolated by
Resolution manual design
Auditability Tool-dependent | Platform-native | Platform-native
Suitability for Moderate Moderate High
Regulated
Environments
Runtime Compile-time Runtime Runtime
Awareness
Support for Limited Limited Strong
Uncertain
Release Dates
Operational Medium Medium Low after initial
Overhead setup

Comparison of Git vs Pega native and Custom Named Ruleset.

D. Comparative Analysis with Git/SVN

e A comparative analysis of Pega Named Ruleset
custom branching with traditional Git/SVN and
Pega Native branching is provided in Table 1. This
comparative analysis clearly demonstrates the
advantages of “Named Ruleset” in enterprise-level
development and release cycles spanning multiple
years.

Evolution of a Ruleset Over Seven Years

Year-7
Mature
Steady State

Ruleset
processes
well-defined,
automation
robust, and
governance
effective

Year -1 Manual Setup

Custom Conflict Jenkins-
ruleset detection utility driven
designed and implemented, orchestration
manually reducing merge and Cl gates
configured conflicts integrated

Tracks Active: Tracks Active: Tracks Tracks
2-3 4-6

Active: 6-8 Active: 4-6

45

Access-group APl-based
prioritization ruleset
stabilized and provisioning
governance standardized
policies across
introduced organization
Tracks Active: Tracks
4-6 Active: 6-8

Ruleset scaled
to handle more
tracks and
complex
scenarios
Tracks Active:
4-6

Fig. 8. Longitudinal case study spanning 7 years.

E. Low-Code Cross-Platform Comparison

o Cross-platform perspective: Most enterprise low-
code platforms, including market leaders such as
Microsoft Power Platform, optimize parallel
development through trunk-based or short-lived
branching models aligned with DevOps best
practices that favor frequent integration to limit
merge risk [22] [23]. Platforms such as Mendix
(Git-backed repositories) [24] and OutSystems
(lifecycle-driven ~ governance) [25] support
collaboration at scale; however, long-running
development tracks with wuncertain release
timelines are typically treated as exceptions due to
escalating dependencies and stabilization
complexity. The Named Ruleset architecture
addresses this gap by enabling governance-
preserving, long-lived parallel development,
maintaining durable isolation while deferring trunk
integration until release readiness, thereby
avoiding premature mergers and excessive toggle-
driven complexity in regulated enterprise
environments.

VIII. AUTOMATION AND INTEGRATION FOR CUSTOM
BRANCH.

As part of this architecture, we implemented full
automation to create and maintain the “Named Ruleset” in
multiple phases. Automation enabled us to identify and
adapt to development track requirements carefully and to
scale the solution for the case study. During the initial
stages, we started with implementing a manual “named
ruleset” creation, where the Pega administrator for the team
manually created custom ‘“Named rulesets”, associated
applications, and custom access groups. We also
implemented automated detection of rule conflicts between
“Named Ruleset” and trunk versions following rule
merging into the trunk. This utility generates reports on
conflicting rules that must be resolved after merging.

During the second stage, following the successful
implementation of the named ruleset, as the number of
named ruleset creations for the case study increased, we
developed automation using Pega rules to create the
“Names Ruleset” and exposed it as APIs. These APIs are
then triggered via the Jenkins Orchestration platform, which
provides comprehensive automation and additional DevOps
capabilities.

In the third stage, we extended automation to standard Pega
DevOps processes for “Names Rulesets”, such as the “Lock
and Roll”, migrating code versions to higher environments,
and validating guardrails as a stage gate, among others.
The “Lock and Roll” [17] process locks one version of the
ruleset and creates a new one to support continuous
development, sprint cycles, and quarterly and yearly release
cycles. Migrating the “named ruleset” code to higher

environments and validating guardrails before migration are
standard DevOps practices for the Pega platform.

Figure 8 illustrates the evolution of the Named Ruleset
approach across seven years, progressing from manual
setup to fully automated DevOps-driven provisioning. The
longitudinal ~ observation spans multiple concurrent
enterprise development tracks, demonstrating architectural
stability, scalability, and sustained operational benefits over
time. In the first year, we began with a limited number of
development tracks, onboarding a POC to assess the
effectiveness of the new methodology, and gradually
expanded the number of tracks as we implemented
additional automation and governance. In a few years, the
development reached a peak, with six to eight named
rulesets used in parallel, and then entered a steady state,
with development velocity stabilizing over time.

IX. CASE STUDY: ENTERPRISE HEALTHCARE
ORGANIZATION

A large U.S. health insurance organization operating in
adherence to HIPAA and SOC2-regulated environment
onboarded a mission-critical enterprise platform in legacy
systems to the Pega platform with the intention of
consolidating legacy applications, reducing onboarding lead
times, and bringing innovations in healthcare insurance
solutions.

Over time, the platform has accumulated multiple
concurrent long-running business initiatives, Parallel
regulatory development, enhancements, frequent production
hotfixes, strict uptime (99.99%) requirements, and external
auditability requirements, all of which have become
standard operating procedures.

Traditional Pega versioning models, based on sequenced
rule-set versions and application-level branching, began to
exhibit operational strain, particularly in coordinating
parallel development, as business priorities changed and
release dates, testing, and stabilization plans were disrupted.
Named Ruleset Strategy: To address these issues, the
platform architects introduced the Named Ruleset pattern as
a long-lived, parallel-development construct rather than a
short-term branching mechanism.

Measurable Outcomes: The introduction of the Named
Ruleset approach delivered quantifiable, enterprise-scale
impact.

e ~ 20% gain in development and testing effort for
long-running development tracks due to avoidance
of frequent mergers, adding toggle-level code, and
testing toggle logic.

e ~50% reduction in deployment-related rework and
conflict resolution compared to branch-based
development.

e Zero critical production incidents attributed to
parallel development collisions

e Faster regulatory response, enabling isolated
compliance updates without halting other

initiatives

e Improved release confidence, supporting continuous
delivery with 99.99% uptime

e Operational cost savings exceeding $1M annually
through reduced rework, faster remediation, and
improved platform stability.

X. CONCLUSION.

This paper introduces the Named Ruleset, a custom parallel
development architecture created to overcome the practical
limitations of native Pega branching in large, long-running
enterprise programs. The model allows teams to operate in
purpose-aligned, long-lived branches for years while safely
consuming trunk-level changes. By reducing reliance on
feature toggles, avoiding premature trunk integration, and
simplifying conflict resolution, the approach is well-suited
to environments with extended or uncertain release
timelines. Validated through multi-year healthcare and
regulated-industry implementations, the Named Ruleset
improved developer autonomy, strengthened release
governance, reduced merge risk, and delivered an estimated
20% annual savings in development and testing effort.
While the initial setup overhead is most suitable for
development tracks exceeding several sprints, the long-term
benefits outweigh this cost in large programs, where
stability, predictability, and governance are non-negotiable.

Although this paper focused on Pega, this innovation
highlights the need to move beyond short-lived branching
assumptions that apply to other low-code platforms
operating in regulated DevSecOps environments across
multiple verticals [22]. As enterprise systems grow in
scope, functionality, and longevity, parallel development
models must accommodate extended timelines, shifting
priorities, and regulated release controls [20]. The “Named
Ruleset” approach represents a practical step in this
direction, enabling a foundation for future research and
tooling to support scalable, governed parallel development
on enterprise low-code platforms. We believe that this
custom branching solution can address the limitations of
Pega branching and advance the Pega DevOps practice to
the next level for Al-ready innovations [21].

REFERENCES

[1] P. Chen, X. Cui, E. Xu, and H. Zhang, “Research on the Teaching
Experiment Mode of Low-code Platform Integrated with Intelligent
Agent,” IECT 25, pp. 103—110, Jun. 2025,
doi: 10.1145/3764206.3764222

[2] “Magic Quadrant for Enterprise Low-Code application platforms,”
www.gartner.com, Jul. 28, 2025.
https://www.gartner.com/doc/reprints?id=1-
2LJ2SZQ2&ct=250725&st=sb (accessed Dec. 23, 2025).

[3] R.A.Markets, “Global $187 billion Low-Code Development
Platform market to 2030,” GlobeNewswire News Room, Nov. 10,
2020. [Online]. Available: https:/www.globenewswire.com/news-
release/2020/11/10/2123468/0/en/Global-187-Billion-Low-Code-
Development-Platform-Market-to-2030.html

[4] “Pega for Healthcare & Life Sciences | Pega,” Dec. 28, 2021.
https://www.pega.com/industries/healthcare

https://www.globenewswire.com/news-release/2020/11/10/2123468/0/en/Global-187-Billion-Low-Code-Development-Platform-Market-to-2030.html
https://www.globenewswire.com/news-release/2020/11/10/2123468/0/en/Global-187-Billion-Low-Code-Development-Platform-Market-to-2030.html
https://www.globenewswire.com/news-release/2020/11/10/2123468/0/en/Global-187-Billion-Low-Code-Development-Platform-Market-to-2030.html
https://www.pega.com/industries/healthcare

[5] “Pega Financial Services: Find solutions built for you | Pega,” Oct.
08, 2021. https://www.pega.com/industries/financial-services

[6] “Insurance software | Pega,” Apr. 12, 2022.
https://www.pega.com/industries/insurance

[71 “Industry software solutions for workflows and decisioning | Pega,”
Sep. 16, 2022. https://www.pega.com/industries

[8] “Pega Customer Service built for personalized experiences | Pega,”
May 05, 2025. https://www.pega.com/products/customer-service

[9] “Al-powered Sales Automation Platform | Pega Sales Automation,”
Sep. 22, 2025. https://www.pega.com/products/sales-automation

[10] “DevOps that work with your organization | Pega,” Feb. 08, 2023.
https://www.pega.com/products/platform/devops

[11] “PegaSystems Documentation.”
https://docs.pega.com/bundle/platform/page/platform/hub/pega-
platform-overview.html

[12] “Rulesets | Pega Academy,” Jan. 13, 2020.
https://academy.pega.com/topic/rulesets/v1

[13] “PegaSystems Documentation.”
https://docs.pega.com/bundle/platform/page/platform/app-
dev/access-groups.html

[14] “PegaSystems Documentation.”
https://docs.pega.com/bundle/platform/page/platform/app-
dev/branches-branch-rulesets.html

[15] “Best practices for branch-based development | Pega Academy,” Sep.
08, 2021. https://academy.pega.com/topic/best-practices-branch-
based-development/v1

[16] “Parallel development | Pega Academy,” Mar. 04, 2020.
https://academy.pega.com/topic/parallel-development/v1/in/2866

[17] “Locking and rolling ruleset versions | Pega Academy,” Dec. 11,
2020. https://academy.pega.com/topic/locking-and-rolling-ruleset-
versions/v2

[18] “Application versioning | Pega Academy,” Mar. 04, 2020.
https://academy.pega.com/topic/application-versioning/v2

[19] “Personas, operators, and work access | Pega Academy,” Mar. 20,
2023. https://academy.pega.com/topic/personas-operators-and-work-
access/vl

[20] B. Binzer, D. Fiirstenau, and T. J. Winkler, “Bridging Business and
IT Through Low-Code/No-Code: Insights into Business-IT
Collaboration in Enterprise Citizen Developer Programs,”
Proceedings of the ... Annual Hawaii International Conference on
System Sciences/Proceedings of the Annual Hawaii International
Conference on System Sciences, Jan. 2025, doi:
10.24251/hicss.2025.054.

[21] “Pega GenAl: the first generative Al for the enterprise | Pega,” Apr.
10, 2024. https://www.pega.com/technology/generative-ai

[22] “DORA | Capabilities: Trunk-based development.”
https://dora.dev/capabilities/trunk-based-development

[23] M. Heuer, C. Kurtz, and T. Bohmann, “Towards a governance of
Low-Code development platforms using the example of Microsoft
Power Platform in a multinational company,” Proceedings of the ...
Annual Hawaii International Conference on System
Sciences/Proceedings of the Annual Hawaii International Conference
on System Sciences, Jan. 2022, doi: 10.24251/hicss.2022.831.

[24] “Version Control Management Tools | Mendix Evaluation Guide,”
Mendix. https://www.mendix.com/evaluation-guide/app-
lifecycle/develop/version-control/

[25] OutSystems, “Development collaboration and version control,”
OutSystems. https://www.outsystems.com/evaluation-
guide/lifecycle-management/version-control

Harikrishnan Muthukrishnan, Principal IT Developer, Independent
Researcher, Jacksonville, Florida, USA, https://orcid.org/0009-0001-7938-

9623, hari.linux@gmail.com.

Harikrishnan Muthukrishnan is a Senior Member of IEEE, a Fellow of
BCS, and a member of the Forbes Technology Council. He is also a
Distinguished Member of the Soft Computing Research Society and serves
on the Computer Advisory Board at the University of Florida.

He has authored and co-authored more than 10 peer-reviewed, high-impact
publications in journals, conference proceedings, and practitioner
platforms. He regularly serves as a reviewer and a member of the technical
program committee for IEEE and Springer-affiliated conferences and

journals. His work focuses on enterprise-scale low-code architecture,
DevSecOps governance, and the modernization of regulated systems.

Chandrasekhar Konasirasagi, Principal IT Developer, Independent
Researcher, Jacksonville, Florida, USA, https://orcid.org/0009-0009-4620-
4424, sk.chandrashekar@gmail.com.

https://www.pega.com/industries/financial-services
https://www.pega.com/industries/insurance
https://www.pega.com/industries
https://www.pega.com/products/customer-service
https://www.pega.com/products/sales-automation
https://www.pega.com/products/platform/devops
https://docs.pega.com/bundle/platform/page/platform/hub/pega-platform-overview.html
https://docs.pega.com/bundle/platform/page/platform/hub/pega-platform-overview.html
https://academy.pega.com/topic/rulesets/v1
https://docs.pega.com/bundle/platform/page/platform/app-dev/access-groups.html
https://docs.pega.com/bundle/platform/page/platform/app-dev/access-groups.html
https://docs.pega.com/bundle/platform/page/platform/app-dev/branches-branch-rulesets.html
https://docs.pega.com/bundle/platform/page/platform/app-dev/branches-branch-rulesets.html
https://academy.pega.com/topic/best-practices-branch-based-development/v1
https://academy.pega.com/topic/best-practices-branch-based-development/v1
https://academy.pega.com/topic/parallel-development/v1/in/2866
https://academy.pega.com/topic/locking-and-rolling-ruleset-versions/v2
https://academy.pega.com/topic/locking-and-rolling-ruleset-versions/v2
https://academy.pega.com/topic/application-versioning/v2
https://academy.pega.com/topic/personas-operators-and-work-access/v1
https://academy.pega.com/topic/personas-operators-and-work-access/v1
https://www.pega.com/technology/generative-ai
https://dora.dev/capabilities/trunk-based-development
https://www.mendix.com/evaluation-guide/app-lifecycle/develop/version-control/
https://www.mendix.com/evaluation-guide/app-lifecycle/develop/version-control/
https://www.outsystems.com/evaluation-guide/lifecycle-management/version-control
https://www.outsystems.com/evaluation-guide/lifecycle-management/version-control
https://orcid.org/0009-0001-7938-9623
https://orcid.org/0009-0001-7938-9623
mailto:hari.linux@gmail.com
https://orcid.org/0009-0009-4620-4424
https://orcid.org/0009-0009-4620-4424

